ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-10-03-07

УДК: 535.34

Type-II photon avalanche associated with interband transitions in crystals: dependences of transmission on incident light intensity

For Russian citation (Opticheskii Zhurnal):

Иванов А.В., Попов А.А., Перлин Е.Ю. Фотонная лавина типа II на межзонных переходах в кристаллах: зависимости пропускания от интенсивности падающего света // Оптический журнал. 2018. Т. 85. № 10. С. 3–7. http://doi.org/10.17586/1023-5086-2018-85-10-03-07

 

Ivanov A.V., Popov A.A., Perlin E.Yu. Type-II photon avalanche associated with interband transitions in crystals: dependences of transmission on incident light intensity [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 10. P. 3–7. http://doi.org/10.17586/1023-5086-2018-85-10-03-07

For citation (Journal of Optical Technology):

A. V. Ivanov, A. A. Popov, and E. Yu. Perlin, "Type-II photon avalanche associated with interband transitions in crystals: dependences of transmission on incident light intensity," Journal of Optical Technology. 85(10), 599-602 (2018). https://doi.org/10.1364/JOT.85.000599

Abstract:

Light transmission in a type-II photon avalanche model based on interband transitions in crystals is studied. For various laser radiation durations and different material thicknesses, the transmission dependences on the intensity of the incident light j0 are obtained. It is shown that the transmission decreases sharply with increasing j0. Thus, in the nanosecond time range, an effective attenuation of radiation with j0≈30–150  kW/cm2 at lengths of 10−2–10−1 cm can be obtained.

Keywords:

phototransitions involving free electrons, nonlinear light absorption, second order processes, light transmission in agent

Acknowledgements:

The research was supported by the Leading Universities of the Russian Federation (grant 08-08); Basic Part of the State Task in the Area of Scientific Research (Project 5.4681.2017/6.7).

OCIS codes: 300.1030, 190.4400, 190.4720

References:

1. J. S. Chivian, W. E. Case, and D. D. Eden, “The photon avalanche: a new phenomenon in Pr 3+ -based infrared quantum counters,” Appl. Phys. Lett. 35(2), 124–125 (1979).
2. A. W. Kueny, W. E. Case, and M. E. Koch, “Nonlinear-optical absorption through photon avalanche,” J. Opt. Soc. Am. B 6(4), 639–642 (1989).
3. H. Ni and S. C. Rand, “Avalanche upconversion in Tm:YALO 3 ,” Opt. Lett. 16(18), 1424–1426 (1991).
4. Y. Chen and F. Auzel, “Room-temperature photon avalanche upconversion in an erbium-doped fluoride fibre,” J. Phys. D 28(1), 207–211 (1995).
5. F. Auzel and Y. H. Chen, “Multiphoton pumping in Er 3+ ZBLAN bulk and fibre first step for the photon avalanche process,” J. Non-Cryst. Solids 184, 57–60 (1995).
6. F. Pellé and P. Goldner, “Steady state analysis of photon avalanche effect,” Acta Phys. Pol. A 90(1), 197–205 (1996).
7. S. Guy, M.-F. Joubert, and B. Jacquier, “Photon avalanche and the mean-field approximation,” Phys. Rev. B 55(13), 8240–8248 (1997).
8. M.-F. Joubert, “Photon avalanche upconversion in rare earth materials,” Opt. Mater. 11, 181–203 (1999).
9. D. B. Gatch, W. M. Dennis, and W. M. Yen, “Photon avalanche effect in LaCl 3 :Pr 3+ ,” Phys. Rev. B 62(16), 10790–10796 (2000).
10. M. P. Hehlen, A. Kuditcher, A. L. Lenef, H. Ni, Q. Shu, S. C. Rand, J. Rai, and S. Rai, “Nonradiative dynamics of avalanche upconversion in Tm:LiYF 4 ,” Phys. Rev. B. 61(2), 1116–1128 (2000).
11. E. Yu. Perlin, A. M. Tkachuk, M.-F. Joubert, and R. Moncorge, “Cascade-avalanche up-conversion in Tm 3+ :YLF crystals,” Opt. Spectrosc. 90(5), 691–700 (2001) [Opt. Spektrosk. 90(5), 772–781 (2001)].
12. A. K. Singh, K. Kumar, A. C. Pandey, O. Parkash, S. B. Rai, and D. Kumar, “Photon avalanche upconversion and pump power studies in LaF 3 :Er 3+ /Yb 3+ phosphor,” Appl. Phys. B 104, 1035–1041 (2011).
13. R. K. Verma, S. K. Singh, and S. B. Rai, “Upconversion, avalanche effect and controlled optical switching in Yb3+ , Ho3+ co-doped Ca12 Al 14 O 33 phosphor,” Curr. Appl. Phys. 12(6), 1481–1484 (2012).
14. P. Babu, I. R. Martín, K. V. Krishnaiah, H. J. Seo, V. Venkatramu, C. K. Jayasankar, and V. Lavín, “Photon avalanche upconversion in Ho3+ -Yb 3+ co-doped transparent oxyfluoride glass-ceramics,” Chem. Phys. Lett. 600, 34–37 (2014).
15. M. Rathaiah, I. R. Martín, P. Babu, K. Lingannaa, C. K. Jayasankar, V. Lavín, and V. Venkatramu, “Photon avalanche upconversion in Ho3+ -doped gallium nano-garnets,” Opt. Mater. 39(1), 16–20 (2015).
16. E. Yu. Perlin, “Photon avalanche effect in doped quantum wells,” J. Lumin. 94–95, 249–253 (2001).
17. E. Yu. Perlin, “Photon avalanche in a doped quantum well,” Opt. Spectrosc. 91(5), 729–734 (2001) [Opt. Spektrosk. 91(5), 777−783 (2001)].

18. E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, “Cascade-avalanche production of electron-hole pairs in type II quantum wells,” J. Exp. Theor. Phys. 96(3), 543–554 (2003) [Zh. Eksp. Teor. Fiz. 123(3), 612–624 (2003)].
19. E. Yu. Perlin and R. S. Levitskii, “Photon avalanche in doped quantum wells: up-conversion and the switching effect,” J. Opt. Technol. 73(1), 1–8 (2006) [Opt. Zh. 73(1), 3–11 (2006)].
20. E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, “Cascade-avalanche up-conversion and generation of nonequilibrium electron-hole pairs in type-II heterostructures with deep quantum wells,” J. Opt. Technol. 73(1), 9–17 (2006) [Opt. Zh. 73(1), 12–21 (2006)].
21. R. S. Levitskiı˘, A. V. Ivanov, and E. Yu. Perlin, “The photon avalanche effect in type-I heterostructures with deep quantum wells,” J. Opt. Technol. 73(2), 71–75 (2006) [Opt. Zh. 73(2), 3–8 (2006)].
22. E. Yu. Perlin, A. V. Ivanov, and R. S. Levitskii, “Prebreakdown generation of nonequilibrium electron-hole pairs: the multiphoton avalanche effect,” J. Exp. Theor. Phys. 101(2), 357–366 (2005) [Zh. Eksp. Teor. Fiz. 128(2(8)), 411–421 (2005)].
23. A. V. Ivanov, R. S. Levitskiı˘, and E. Yu. Perlin, “Multiphoton avalanche generation of free carriers in a multiband crystal,” Opt. Spectrosc. 107(2), 255–263 (2009) [Opt. Spektrosk. 107(2), 272−280 (2009)].
24. E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, “Interband phototransitions involving free electrons: I. Crystals with a direct band gap,” Opt. Spectrosc. 113(4), 376–382 (2012) [Opt. Spektrosk. 113(4), 418−425 (2012)].
25. E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, “Interband phototransitions involving free electrons: Part II. Crystals with an indirect band gap,” Opt. Spectrosc. 113(4), 383–387 (2012) [Opt. Spektrosk. 113(4), 426−430 (2012)].
26. E. Yu. Perlin, A. V. Ivanov, and A. A. Popov, “Interband phototransitions involving free electrons: III. Transmission of light through crystals,” Opt. Spectrosc. 115(5), 739–744 (2013) [Opt. Spektrosk. 115(5), 830−835 (2013)].
27. A. A. Popov, E. Yu. Perlin, and A. V. Ivanov, “Generation kinetics of nonequilibrium charge carriers in crystals with deep impurities involving two-center transitions between band and impurity states,” Opt. Spectrosc. 124(4), 509–515 (2018) [Opt. Spektrosk. 124(4), 492−498 (2018)].
28. A. A. Popov, E. Yu. Perlin, and A. V. Ivanov, “Transmission of light in crystals with deep impurities involving two-center mechanisms of nonlinear photoexcitation,” Opt. Spektrosk. 125(2), 213–217 (2018).