ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-07-17-26

УДК: 535.515

Study of the electro-optical transformation of linearly polarized Bessel beams propagating along the optic axis of an anisotropic DKDP crystal

For Russian citation (Opticheskii Zhurnal):

Хонина С.Н., Подлипнов В.В., Волотовский С.Г. Исследование электрооптического преобразования линейно-поляризованных пучков Бесселя при распространении вдоль оптической оси анизотропного кристалла DKDP // Оптический журнал. 2018. Т. 85. № 7. С. 17–26. http://doi.org/10.17586/1023-5086-2018-85-07-17-26

 

Khonina S.N., Podlipnov V.V., Volotovskiy S.G. Study of the electro-optical transformation of linearly polarized Bessel beams propagating along the optic axis of an anisotropic DKDP crystal [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 17–26. http://doi.org/10.17586/1023-5086-2018-85-07-17-26

For citation (Journal of Optical Technology):

S. N. Khonina, V. V. Podlipnov, and S. G. Volotovskiĭ, "Study of the electro-optical transformation of linearly polarized Bessel beams propagating along the optic axis of an anisotropic DKDP crystal," Journal of Optical Technology. 85(7), 388-395 (2018). https://doi.org/10.1364/JOT.85.000388

Abstract:

This paper presents a numerical and experimental study of the electrically controllable transformation of linearly polarized Bessel laser beams propagating along the optic axis of an anisotropic DKDP (deuterated potassium dihydrophosphate) crystal. Based on numerical modeling and experiment, it is shown to be possible to vary the intensity distribution at the output of an anisotropic crystal by varying the wavelength of light at a fixed length of the crystal. The propagation of a plane-polarized zeroth-order Bessel beam is numerically modeled along the axis of a DKDP crystal in the presence of an applied electric field, which causes the appearance of induced biaxiality of the electro-optical crystal. The dynamic transformation of Bessel beams when an electric field is applied along the optic axis of an anisotropic crystal is experimentally studied.

Keywords:

electrooptics, anisotropic crystal, Bessel beams, axicon, DKDP

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (RFBR) (16-29-11698-ofi_m); Federal Agency of Scientific Organizations (007-GZ/Ch3363/26).

OCIS codes: 260.1180

References:

1. Y. Qing, “High-efficiency electrically tunable diffraction grating based on a transparent lead magnesium niobate–lead titanite electro-optic ceramic,” Opt. Lett. 36(13), 2453–2455 (2011).
2. V. D. Paranin, “Methods to control parameters of a diffraction grating on the surface of lithium niobate electro-optical crystal,” Tech. Phys. 59(11), 1723–1727 (2014).
3. D. L. Golovashkin, V. V. Kotlyar, V. A. Soifer, L. L. Doskolovich, N. L. Kazanskiy, V. S. Pavelyev, S. N. Khonina, and R. V. Skidanov, Computer Design of Diffractive Optics, V. A. Soifer, ed. (Woodhead Publishing Ltd., Cambridge, 2012).
4. W. Zhu and W. She, “Electro-optically generating and controlling right and left-handed circularly polarized multiring modes of light beams,” Opt. Lett. 37(14), 2823–2825 (2012).
5. W. Zhu and W. She, “Electrically controlling spin and orbital angular momentum of a focused light beam in a uniaxial crystal,” Opt. Express 20(23), 25876–25883 (2012).
6. E. Cagniot, M. Fromager, T. Godin, N. Passilly, and K. Aït-Ameur, “Transverse super-resolution technique involving rectified Laguerre-Gaussian LG p 0 beams,” J. Opt. Soc. Am. A 28(8), 1709–1715 (2011).
7. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3(2), 161–204 (2011).
8. V. A. Soifer, V. V. Kotlyar, and S. N. Khonina, “Optical microparticle manipulation: advances and new possibilities created by diffractive optics,” Phys. Part. Nucl. 35(6), 733–766 (2004).
9. Y. Matsuoka, Y. Kizuka, and T. Inoue, “The characteristics of laser micro drilling using a Bessel beam,” Appl. Phys. A 84(4), 423–430 (2006).
10. S. V. Alferov, S. V. Karpeev, S. N. Khonina, K. N. Tukmakov, O. Yu. Moiseev, S. A. Shulyapov, K. A. Ivanov, and A. B. Savel’ev-Trofimov, “On the possibility of controlling laser ablation by tightly focused femtosecond radiation,” Quantum Electron. 44(11), 1061–1065 (2014).
11. N. S. Kazak, N. A. Khilo, and A. A. Ryzhevich, “Generation of Bessel light beams under the conditions of internal conical refraction,” Quantum Electron. 29(11), 1020–1024 (1999).
12. V. N. Belyi, N. S. Kasak, and N. A. Khilo, “Frequency conversion of Bessel light beams in nonlinear crystals,” Quantum Electron. 30(9), 753–766 (2000).
13. N. A. Khilo, A. A. Ryzhevich, and E. S. Petrova, “Transformation of the order of Bessel light beams in uniaxial crystals,” Quantum Electron. 31(1), 85–89 (2001).
14. V. N. Belyi, N. A. Khilo, N. S. Kazak, A. A. Ryzhevich, and A. Forbes, “Propagation of high-order circularly-polarized Bessel beams and vortex generation in uniaxial crystals,” Opt. Eng. 50, 059001 (2011).
15. S. N. Khonina, A. A. Morozov, and S. V. Karpeev, “Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal,” Laser Phys. 24, 056101 (2014).
16. V. D. Paranin, S. N. Khonina, and S. V. Karpeev, “Control of the optical properties of a CaCO 3 crystal in problems of generating Bessel vortex beams by heating,” Optoelectron. Instrum. Data Process. 52(2), 174–179 (2016).
17. V. D. Paranin, S. V. Karpeev, and S. N. Khonina, “Control of the formation of vortex Bessel beams in uniaxial crystals by varying the beam divergence,” Quantum Electron. 46(2), 163–168 (2016).
18. S. N. Khonina, S. G. Volotovsky, and S. I. Kharitonov, “Features of nonparaxial propagation of Gaussian and Bessel beams along the axis of the crystal,” Comput. Opt. 37(3), 297–306 (2013).
19. S. N. Khonina and S. I. Kharitonov, “Comparative investigation of non-paraxial mode propagation along the axis of uniaxial crystal,” J. Mod. Opt. 62(2), 125–134 (2015).
20. S. N. Khonina, S. V. Karpeev, A. A. Morozov, and V. D. Paranin, “Implementation of ordinary and extraordinary beams interference by application of diffractive optical elements,” J. Mod. Opt. 63(13), 1239–1247 (2016).
21. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
22. V. P. Koronkevich, V. P. Korol’kov, A. G. Poleshchuk, A. A. Kharisov, and V. V. Cherkashin, “Synthesizing diffraction optical elements in a polar coordinate system: analysis of fabrication and measurement errors,” Avtometriya (6), 42–56 (1997).
23. A. V. Volkov, N. L. Kazanskiı˘, O. Yu. Moiseev, and S. D. Poletaev, “Thermal oxidative degradation of molybdenum films under laser ablation,” Tech. Phys. 60(2), 265–269 (2015) [Zh. Tekh. Fiz. 85(2), 107–111 (2015)].
24. Yu. S. Kuz’minov, Ferroelectric Crystals for Controlling Laser Radiation (Nauka, Moscow, 1982).
25. S. N. Khonina and S. I. Kharitonov, “An analog of the Rayleigh-Sommerfeld integral for anisotropic and gyrotropic media,” J. Mod. Opt. 60, 814–822 (2013).