ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-01-13-20

УДК: 543.424.2

Chemometric analysis during the fabrication of biological implants from cerebral dura mater

For Russian citation (Opticheskii Zhurnal):

Тимченко П.Е., Тимченко Е.В., Волова Л.Т., Волов Н.В., Фролов О.О. Хемометрический анализ биоимплантатов из твердой мозговой оболочки при их изготовлении // Оптический журнал. 2019. Т. 86. № 1. С. 13–20. http://doi.org/10.17586/1023-5086-2019-86-01-13-20

 

Timchenko P.E., Timchenko E.V., Volova L.T., Volov N.V., Frolov O.O. Chemometric analysis during the fabrication of biological implants from cerebral dura mater  [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 13–20. http://doi.org/10.17586/1023-5086-2019-86-01-13-20

For citation (Journal of Optical Technology):

P. E. Timchenko, E. V. Timchenko, L. T. Volova, N. V. Volov, and O. O. Frolov, "Chemometric analysis during the fabrication of biological implants from cerebral dura mater," Journal of Optical Technology. 86(1), 9-15 (2019). https://doi.org/10.1364/JOT.86.000009

Abstract:

This paper presents the results of a comparative spectral estimate of the surface components of implant samples based on cerebral dura mater fabricated by the Lyoplast technology, with and without ultrasound treatment. Raman spectroscopy is chosen as the main test method. These studies make it possible to propose criteria that allow the relative concentrations of the main components of the extracellular matrix to be estimated. It is shown that deconvolution of the spectra by fitting a spectral contour and chemometric analysis by the principal-component method make it possible to carry out an extended qualitative and quantitative component analysis of bioimplants based on cerebral dura mater in terms of the contents of the main biomatrix indices and to rapidly estimate the most representative parameters that affect the implant quality.

Keywords:

Raman spectroscopy, optical coefficients, cerebral dura mater, ultrasound treatment

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (RFBR) (17-44-630343 r_a).

OCIS codes: 300.6450, 160.1435, 170.6510

References:

1. M. W. Kassab and R. E. Cohen, “The etiology and prevalence of gingival recession,” J. Am. Dent. Assoc. 134(2), 220–225 (2003).
2. G. F. Vol’f, É. M. Rateı˘tskhak, and K. N. Rateı˘tskhak, Parodontology (MEDpress-Inform, Moscow, 2008).
3. I. Yu. Aleksandrovskaya, Planning Therapeutic Measures for Periodontal Diseases (Meditsinskoe Informatsionnoe Agentstvo, Moscow, 2010).

4. G. Zucchelli and M. J. De Sanctis, “Treatment of multiple recession-type defects in patients with esthetic demands,” J. Periodontol. 71(9), 1506–1514 (2000).
5. M. A. Nosova, “Efficiency of the operation of coronal displacement with plastic surgery using Lyoplast dura mater to eliminate multiple gingival recession,” Aspir. Vestn. Povolzh’ya. (5–6), 103–106 (2016).
6. M. A. Nosova, A. N. Sharov, and L. T. Volova, “Method of surgical treatment of multiple gingival recessions,” Russian Patent No. 2,648,855 (2018).
7. H. Chen, P. W. Xu, and N. Broderick, “In vivo spinal nerve sensing in MISS using Raman spectroscopy,” Proc. SPIE 9802, 98021L (2016).
8. J. L. Chen, L. Duan, and W. Zhu, “Extracellular matrix production in vitro in cartilage tissue engineering,” J. Transl. Med. 12(88) (2014).
9. L. T. Volova, N. A. Maksimenko, and N. V. Volov, “Method of plastic surgery of the nasal dorsum,” Russian Patent No. 2,631,744 (2017).
10. E. V. Timchenko, N. V. Tregub, L. A. Taskina, E. A. Selezneva, and P. E. Timchenko, “Optical methods for control of hydrogen influence on plants,” Proc. SPIE 9221, 922108 (2014).
11. V. P. Zaharov, E. V. Timchenko, P. E. Timchenko, A. D. Zolotuhina, and S. V. Alembekov, “Alteration of hydrosphere optical properties by synthetic active compounds,” Comput. Opt. 35(2), 238–242 (2011).
12. V. Yu. Kolosov, Studying Nanomaterials by Scanning Electron Microscopy: Methodological Indications (Izd. Ural’sk. Gos. Univ., Ekaterinburg, 2008).
13. J. I. Goldstein, D. E. Newbury, J. R. Michael, and N. W. M. Ritchie, Scanning Electron Microscopy and X-ray Microanalysis (Springer, New York, 2017; Mir, Moscow, 1984).
14. S. Koljenovic, T. B. Schut, A. Vincent, J. M. Kros, and G. J. Puppels, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77(24), 7958–7965 (2005).
15. T. A. Anderson, J. W. Kang, T. Gubin, and R. R. Dasari, “Raman spectroscopy differentiates each tissue from the skin to the spinal cord: a novel method for epidural needle placement,” Anesthesiology 125(4), 793–804 (2016).
16. P. E. Timchenko, E. V. Timchenko, E. V. Pisareva, M. Yu. Vlasov, N. A. Red’kin, and O. O. Frolov, “Spectral analysis of allogenic hydroxyapatite powders,” J. Phys.: Conf. Ser. 784, 012060 (2017).
17. S. Koljenovic, T. B. Schut, and A. Vincent, “Detection of meningioma in dura mater by Raman spectroscopy,” Anal. Chem. 77(24), 7958–7965 (2005).
18. E. V. Timchenko, P. E. Timchenko, L. T. Volova, S. V. Pershutkina, and P. Y. Shalkovsky, “Optical analysis of aortic implants,” Opt. Mem. Neural Networks 25(3), 192–197 (2016).
19. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61, 1225–1232 (2007).
20. E. V. Timchenko, P. E. Timchenko, L. T. Volova, D. A. Dolgushkin, P. Y. Shalkovsky, and S. V. Pershutkina, “Detailed spectral analysis of decellularized skin implants,” J. Phys.: Conf. Ser. 737, 012050 (2016).
21. H. J. Motulsky and A. Christopoulos, Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting (GraphPad Software Inc., San Diego CA, 2003).
22. G. J. Thomas, “Raman spectroscopy of viruses and protein–nucleic acid interactions,” SPEX Speaker 21(4), 1–12 (1976).
23. G. Shetty, C. Kedall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: evaluation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94, 1460–1464 (2006).
24. M. M. Cristina, A. Halmagyi, D. P. Mircea, and P. Ioana, “FT-Raman signatures of genomic DNA from plant tissues,” J. Spectrosc. 23, 59–70 (2009).
25. T. R. Rudd, R. Hussain, G. Siligardi, and E. A. Yates, “Raman and Raman optical activity of glycosaminoglycans,” Chem. Commun. 46(23), 4124–4126 (2010).
26. R. Malini, K. Venkatakrishma, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, and C. M. Krishna, “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: a Raman spectroscopy study,” Biopolymers 81(3), 179–193 (2006).
27. R. J. Lakshimi, V. B. Kartha, C. M. Krishna, J. G. R. Solomon, and G. Ullas, “Tissue Raman spectroscopy for the study of radiation damage: brain irradiation of mice,” Radiat. Res. 157, 175–182 (2002).
28. C. Krafft, L. Neudert, T. Simat, and R. Salzer, “Near-infrared Raman spectra of human brain lipids,” Spectrochim. Acta Part A 61, 1529–1535 (2005).
29. A. J. Ruiz-Chica, M. A. Medina, F. Sanchez-Jimenez, and F. J. Ramirez, “Characterization by Raman spectroscopy of conformational changes on guanine-cytosine and adenine-thymine oligonucleotides induced by aminooxy analogues of spermidine,” J. Raman Spectrosc. 35, 93–100 (2004).
30. W.-T. Cheng, M.-T. Liu, H.-N. Liu, and S.-Y. Lin, “Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma,” Microsc. Res. Tech. 68, 75–79 (2005).
31. H. Martens and T. Naes, Multivariate Calibration (Wiley, New York, 1991).