ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-03-03-07

УДК: 535.33:621.373:535

High-frequency acousto-optic light modulation by double propagation of the beam through two Bragg cells

For Russian citation (Opticheskii Zhurnal):

Котов В.М., Аверин С.В., Котов Е.В. Высокочастотная акустооптическая модуляция света при двойном прохождении излучения через две брэгговские ячейки // Оптический журнал. 2019. Т. 86. № 3. С. 3–7. http://doi.org/10.17586/1023-5086-2019-86-03-03-07

 

Kotov V.M., Averin S.V., Kotov E.V. High-frequency acousto-optic light modulation by double propagation of the beam through two Bragg cells [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 3–7. http://doi.org/10.17586/1023-5086-2019-86-03-03-07

For citation (Journal of Optical Technology):

V. M. Kotov, S. V. Averin, and E. V. Kotov, "High-frequency acousto-optic light modulation by double propagation of the beam through two Bragg cells," Journal of Optical Technology. 86(3), 129-132 (2019). https://doi.org/10.1364/JOT.86.000129

Abstract:

A method of light modulation in a wide acoustic frequency band by means of light transmission through two identical acousto-optic (AO) Bragg cells, in which acoustic waves propagate in opposite directions, is proposed and investigated. The peculiarities of the method make it possible to compensate the shift between the interfering beams caused by beam deviation during the AO diffraction process. The method is implemented experimentally with two AO cells fabricated from paratellurite for high-frequency light modulation for a wavelength of 0.63 μm.

Keywords:

acousto-optic diffraction, Bragg diffraction mode, frequency shift, amplitude modulation

Acknowledgements:

The research was partially supported by the Russian Foundation for Basic Research (RFBR) (grants Nos.18-07 00259, 16-07-00064).

OCIS codes: 230.0230, 230.1040

References:

1. V. I. Balakshiı˘, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics (Radio i Svyaz’, Moscow, 1985).
2. J. Xu and R. Stroud, Acousto-optic Devices: Principles, Design and Applications (John Wiley and Sons. Inc., New York, 1992).
3. D. L. Hecht, “Multifrequency acoustooptic diffraction,” IEEE Trans. Sonics Ultrason. 24(1), 7–18 (1977).
4. N. K. Maneshin, V. N. Parygin, and A. D. Sokurenko, “Two-dimensional scanning of light by ultrasound,” Vestn. Mosk. Univ. Ser. 3: Fiz. Astron. 16(5), 574–578 (1995).
5. A. R. Athale, J. van der Gracht, D. W. Prather, and J. N. Mait, “Incoherent optical image processing with acousto-optic pupil-plane filtering,” Appl. Opt. 34(2), 276–280 (1995).
6. P. P. Banerjee, D. Cao, and T.-C. Poon, “Basic image-processing operations by use of acousto-optics,” Appl. Opt. 36(14), 3086–3089 (1997).
7. D. Cao, P. P. Banerjee, and T.-C. Poon, “Image edge enhancement with two cascaded acousto-optic cells with contrapropagating sound,” Appl. Opt. 37(14), 3007–3014, 1998.
8. S. N. Antonov, “Acousto-optic devices for manipulating unpolarized light and polarization modulators based on paratellurite crystal,” Zh. Teor. Fiz. 74(10), 84–89 (2014).
9. F. W. Freyre, “Zero frequency shift Bragg cell beam deflection and translation,” Appl. Opt. 20(22), 3896–3900 (1981).
10. D. Royer and E. Dieulesaint, Elastic Waves in Solids I (Springer, Berlin, 2000).
11. D. Royer and E. Dieulesaint, Elastic Waves in Solids II (Springer, Berlin, 2000).
12. J. Shamir and Y. Fainman, “Rotating linearly polarized light source,” Appl. Opt. 21(3), 364–365 (1982).
13. V. M. Kotov and E. V. Kotov, “Using an acousto-optic cell made from a gyrotropic crystal for amplitude modulation of an optical signal,” J. Opt. Technol. 84(6), 401–403 (2017) [Opt. Zh. 84(6), 51–53 (2017)].
14. V. V. Lemanov and O. V. Shakin, “Light scattering by elastic waves in uniaxial crystals,” Fiz. Tverd. Tela 14(1), 229–236, 1972.
15. V. M. Kotov, S. V. Averin, and E. V. Kotov, “Acousto-optic conversion of the frequency shift of the optical radiation into the amplitude modulated signal,” Prikl. Fiz. (3), 65–68, 2016.