ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-04-69-73

УДК: 544.032.65

Study of the resolution of direct recording of submicron structures on titanium films using millisecond laser pulses

For Russian citation (Opticheskii Zhurnal):

Шахно Е.А., Нгуен К.З. Исследование разрешающей способности прямой записи субмикронных структур на плёнках титана миллисекундными лазерными импульсами  // Оптический журнал. 2019. Т. 86. № 4. С. 69–73. http://doi.org/10.17586/1023-5086-2019-86-04-69-73

 

Shakhno E.A., Nguyen K.Z. Study of the resolution of direct recording of submicron structures on titanium films using millisecond laser pulses [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 69–73. http://doi.org/10.17586/1023-5086-2019-86-04-69-73 

For citation (Journal of Optical Technology):

E. A. Shakhno and K. Z. Nguyen, "Study of the resolution of direct recording of submicron structures on titanium films using millisecond laser pulses," Journal of Optical Technology. 86(4), 251-254 (2019). https://doi.org/10.1364/JOT.86.000251

Abstract:

The local laser oxidation of titanium thin films was simulated at submicron sizes of the irradiation region. Radial distributions of the film temperature, oxide layer thickness, and film transmittance were obtained, taking into account the temporal and spatial dependence of the film absorptivity on the thickness of the oxide layer formed. The calculation results revealed the conditions for achieving high resolution (a minimum size of a recorded image of 230 nm for the visible range) and high recording contrast simultaneously. The optimal ranges of radiation power density and film thickness were determined.

Keywords:

thin films, laser oxidation, resolution, diffractive optical elements, transmittance, contrast

Acknowledgements:

The authors thank V. P. Veyko for helpful discussions.The research was supported by the Russian Science Foundation (RSF) (grant No. 17-19-01721).

OCIS codes: 310.6860, 350.3390

References:

1. T. C. Chong, M. H. Hong, and L. P. Shi, “Laser precision engineering: from microfabrication to nanoprocessing,” Laser Photon. Rev. 4(1), 123–143 (2010).
2. V. Veiko, M. Yarchuk, R. Zakoldaev, M. Gedvilas, G. Račiukaitis, M. Kuzivanov, and A. Baranov, “Picosecond laser registration of interference pattern by oxidation of thin Cr films,” Appl. Surf. Sci. 404, 63–66 (2017).
3. M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
4. V. P. Veı˘ko, R. A. Zakoldaev, D. A. Sinev, E. A. Shakhno, M. Gedvilas, B. Voizat, S. Indrizhinas, and G. Rachaiti, “Experimental implementation and analysis of the capabilities of thermochemical laser interference recording on titanium films,” in Beam Technologies and Laser Application: Proceedings of the International Conference (2016), pp. 366–370.
5. S. V. Maksimova, V. V. Koval’, R. A. Zakoldaev, E. Shakhno, M. O. Kuzivanov, and Yu. S. Morozov, “Oxidation of titanium films by picosecond laser pulses in a multipath interference scheme,” in VII International Conference on Photonics and Information Optics: A Collection of Scientific Works (NIYaU MIFI, Moscow, 2018), pp. 478–479.
6. A. G. Poleshchuk, V. P. Veı˘ko, and V. P. Korol’kov, “Laser technology for the formation of the structure of diffractive optical elements,” Mir Gologr. 3(1), 29–34 (2017).
7. R. V. Shimanskiı˘, A. G. Poleshchuk, V. P. Korol’kov, and V. V. Cherkashin, “The combination of the recording beam with the axis of rotation of the diffraction structure in the manufacture of DOE in the polar coordinate system,” Avtometriya 53(2), 30–38 (2017).
8. V. P. Veı˘ko, V. P. Korol’kov, A. G. Poleshchuk, D. A. Sinev, and E. A. Shakhno, “Laser technologies in micro-optics. Part 1. Production of diffractive optical elements and photomasks with amplitude transmittance,” Avtometriya 53(5), 66–77 (2017).
9. V. P. Veı˘ko and A. G. Poleshchuk, “Laser-induced local oxidation of thin metal films: physical fundamentals and applications,” in Fundamentals of Laser-Assisted Micro- and Nanotechnologies, V. P. Veı˘ko and V. I. Konov, eds., Springer Series in Materials Science (Springer Verlag, New York, 2014), pp. 149–172.
10. Y. Wang, J. Miao, Y. Tian, C. Guo, J. Zhang, T. Ren, and Q. Liu, “TiO 2 micro-devices fabricated by laser direct writing,” Opt. Express 19, 17390–17395 (2011).
11. A. Gorbunov, H. Eichler, W. Pompe, and B. Huey, “Lateral self-limitation in the laser-induced oxidation of ultrathin metal films,” Appl. Phys. Lett. 69(19), 2816–2818 (1996).
12. A. A. Gorbunov, W. Pompe, H. Eichler, B. Huey, and D. A. Bonnell, “Nanostructuring of laser-deposited Ti films by self-limited oxidation,” J. Am. Ceram. Soc. 80(7), 1663–1667 (1997).
13. E. A. Shakhno, D. A. Sinev, and A. M. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014) [Opt. Zh. 81(5), 93–98 (2014)].
14. E. A. Shakhno and Q. D. Nguen, “Dynamics of the laser heating and oxidation of thin metallic films, allowing for absorptivity variation,” J. Opt. Technol. 83(4), 219–223 (2016) [Opt. Zh. 83(4), 31–37 (2016)].
15. V. P. Veı˘ko, Laser Processing of Film Elements (Mashinostroenie, Leningrad, 1986).
16. M. N. Libenson, Laser-Induced Optical and Thermal Processes in Condensed Media and Their Mutual Influence (Nauka, Saint Petersburg, 2007).