ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-09-63-67

УДК: 535.37

Highly efficient emitter based on gelatin films with a modified structure

For Russian citation (Opticheskii Zhurnal):

Лантух Ю.Д., Летута С.Н., Пашкевич С.Н., Алиджанов Э.К., Тихонов Г.А. Высокоэффективный излучатель на основе пленок желатина с модифицированной структурой // Оптический журнал. 2019. Т. 86. № 9. С. 63–67. http://doi.org/10.17586/1023-5086-2019-86-09-63-67

 

Lantukh Yu.D., Letuta S.N., Pashkevich S.N., Alidzhanov E.K., Tikhonov G.A. Highly efficient emitter based on gelatin films with a modified structure [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 9. P. 63–67. http://doi.org/10.17586/1023-5086-2019-86-09-63-67 

For citation (Journal of Optical Technology):

Yu. D. Lantukh, S. N. Letuta, S. N. Pashkevich, E. K. Alidjanov, and G. A. Tikhonov, "Highly efficient emitter based on gelatin films with a modified structure," Journal of Optical Technology. 86(9), 582-586 (2019). https://doi.org/10.1364/JOT.86.000582

Abstract:

A method for the physicochemical modification of the structure of gelatinous films is proposed. For this purpose, molecular-recognition-based self-assembly was used: the formation of (bio)polymolecular complexes between gelatin and chitosan owing to the interactions of the main amino acid residues in gelatin and acidic amino groups in the structure of chitosan (cooperative polyelectrolyte interaction). The use of a gelatin–chitosan matrix made it possible to significantly increase the luminescence yield of the dyes introduced into the biopolymer. This was due to the more efficient filling of the corresponding binding gelatin sites with dye molecules and, consequently, minimization of the concentration quenching of fluorescence. In the film samples of gelatin–chitosan matrix–dye, effective superluminescence of sulforhodamine B was achieved.

Keywords:

gelatin, chitosan, biopolymer films, polyelectrolyte interaction, dye-polymer complex, acridine orange, sulforhodamine B, fluorescence, superluminescence

Acknowledgements:
The research was supported by the Ministry of Education and Science of the Russian Federation (project No. 3.6358.2017/BCh).

OCIS codes: 300.6290, 250.2080

References:

1. V. I. Zemskiı˘, Yu. L. Kolesnikov, and I. K. Meshkovskiı˘, Physics and Technology of Pulsed Dye Lasers (ITMO University, St. Petersburg, 2005).
2. L. N. Deryugin, O. I. Ovcharenko, V. E. Sotin, and T. K. Chekhlova, “Thin-film rhodamine 6G laser on a waveguide with a corrugated substrate,” Kvant. Elektron. 2(9), 2073–2075 (1975).
3. T. Hansch, M. Pernier, and A. Schawlow, “Laser action of dyes in gelatin,” J. Quantum Electron. 7(1), 45–46 (1971).
4. S. Calixto, N. Ganzherli, S. Gulyaev, and S. Figueroa-Gerstenmaier, “Gelatin as a photosensitive material,” Molecules 23(8), 1–22 (2018).
5. T. Sh. Éfendiev, V. M. Katarkevich, A. N. Rubinov, and A. A. Afanasyev, “Compact dye laser with stationary distributed feedback based on a nanocomposite medium,” in 8th International Scientific Conference for Laser Physics and Optical Technologists, V. A. Orlovich, ed. (Minsk, 2010), pp. 21–24.
6. V. I. Yuzhakov, A. M. Saletskiı˘, B. M. Uzhinov, and V. I. Primak, “Association and its influence on the generation of mixed solutions of rhodamine 6G and oxazine 17,” Zh. Fiz. Khim. 59(7), 1664–1667 (1985).
7. V. I. Yuzhakov, “Association of dye molecules and its spectroscopic manifestation,” Usp. Khim. 48(11), 1076–2033 (1979).
8. Yu. D. Lantukh, G. A. Ketsle, S. N. Pashkevich, S. N. Letuta, and D. A. Razdobreev, “Recording mechanism of photochemical holograms in a thiazine-dye-polyvinyl-alcohol medium under the action of a helium-neon laser,” J. Opt. Technol. 73(7), 484–487 (2006) [Opt. Zh. 73(7), 70–74 (2006)].
9. Yu. D. Lantukh, S. N. Pashkevich, S. N. Letuta, E. K. Alidzhanov, and A. A. Kul’sarin, “Spectroscopic properties of DNA-acridine orange biopolymer films,” Opt. Spectrosc. 110(6), 880–884 (2011) [Opt. Spektrosk. 110(6), 932–937 (2011)]
10. Y. Kawabe, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372–1374 (2002).
11. V. N. Izmaı˘lova, S. R. Derkach, M. A. Sakvarelidze, S. M. Levachev, N. G. Voron’ko, and G. P. Yampolskaya, “Gelation in gelatin and multicomponent systems based on it,” Vysokomol. Soedin. 46(12), 2216–2240 (2004).

12. V. A. Izumrudov, “Self-assembly and molecular recognition phenomena in solutions of (bio)polyelectrolyte complexes,” Usp. Khim. 74(4), 401–415 (2008).
13. N. G. Voron’ko, S. R. Derkach, and N. I. Sokolan, “The interaction of gelatin with chitosan: the effect of polysaccharide concentration,” Vestn. MGTU 18(1), 80–89 (2015).
14. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507–1513 (2007).
15. Yu. D. Lantukh and S. N. Pashkevich, “Superluminescence in DNA-dye film systems,” Vestn. OGU 12, 113–116 (2012).