ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-03-75-79

УДК: 535. 538.9. 546

Study of the luminescence of calcium niobate activated by neodymium

For Russian citation (Opticheskii Zhurnal):

Москвитина Е.А., Воробьев В.А. Исследование люминесценции ниобата кальция, активированного неодимом // Оптический журнал. 2020. Т. 87. № 3. С. 75–79.


Moskvitina E.A., Vorobiev V.A. Study of the luminescence of calcium niobate activated by neodymium [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 3. P. 75–79.

For citation (Journal of Optical Technology):

E. A. Moskvitina and V. A. Vorobiev, "Study of the luminescence of calcium niobate activated by neodymium," Journal of Optical Technology. 87(3), 189-192 (2020).


In this study, samples of calcium niobate activated with neodymium (CaNb2O6:Nd) were synthesized using the solid-phase method in air. The optical properties were investigated at 300 K. The optical bandgap of CaNb2O6:Nd was found to be 3.6 eV. The luminescent properties of the samples in the infrared spectral region were analyzed, and the optimal concentration of neodymium ions in the compound was determined. The luminescence spectrum consists of a set of bands with the maxima located at wavelengths of 896, 1061, and 1341 nm. The luminescence decay kinetics is characteristic of intracenter luminescence. The average lifetime of Nd-ion excited states in a CaNb2O6:Nd compound is within the range of 40–100 µs depending on the activator concentration.


calcium niobate, luminescence, neodymium, kinetics, bandgap, intracenter luminescence

OCIS codes: 160.2540, 160.5690


1. N. Li, W. Wang, P. Duan, Y. Wang, X. Sun, J. Di, W. Li, B. Chu, and Q. He, “Up conversion luminescence of Ho3+ /Yb3+ co-doped CaNb2 O6 thin films,” Chem. Phys. Lett. 644, 152–156 (2016).
2. J. P. Cummings and S. H. Simonsen, “The crystal structure of calcium niobate (CaNb2 O6 ),” Am. Mineral. 55(1-2), 90–97 (1970).

3. H.-Z. An, C. Wang, T.-M. Wang, and W. Hao, “Photocatalytic activity of M(M=Mg, Ca, Sr, Ba, Ni)Nb2 O6 ,” J. Inorg. Mater. 22(5), 922–926 (2007).
4. K. C. Mathai, S. Vidya, A. John, S. Salomon, and J. Thomas, “Structural, optical, and compactness characteristics of nanocrystalline CaNb2 O6 synthesized through an autoigniting combustion method,” Adv. Condens. Matter Phys. 2014, 735878 (2014).
5. H. G. Kim, D. W. Hwang, S. W. Bae, J. Kim, V. R. Reddy, and K. H. Lee, “Synthesis and characterization of ANb2 O6 (A = Ba, Ca, Co, Mg, Ni, Zn, Sr) photocatalysts,” Theor. Appl. Chem. Eng. 8, 108 (2002).
6. Y. Zhang, C. Liu, G. Pang, S. Jiao, S. Zhu, D. Wang, D. Liang, and S. Feng, “Hydrothermal synthesis of a CaNb2 O6 hierarchical micro/nanostructure and its enhanced photocatalytic activity,” Eur. J. Inorg. Chem. 2010(8), 1275–1282 (2010).
7. I.-S. Cho, S. T. Bae, D. H. Kim, and K. S. Hong, “Effects of crystal and electronic structures of ANb2 O6 (A = Ca, Sr, Ba) metaniobate compounds on their photocatalytic H2 evolution from pure water,” Int. J. Hydrogen Energy 35(23), 12954–12960 (2010).
8. A. Wachtel, “Self-activated luminescence of M2+ niobates and tantalates,” J. Electrochem. Soc. 111, 534–538 (1964).
9. J. R. Thornton, W. D. Fountain, G. W. Flint, and T. G. Crow, “Properties of neodymium laser materials,” Appl. Opt. 8(6), 1087–1120 (1969).
10. A. A. Ballman and A. Yariv, “Calcium niobate Ca(NbO3 )2 —a new laser host crystal,” Appl. Phys. 34(11), 3155–3156 (1963).
11. R. Haugsrud and T. Norby, “Proton conduction in rare-earth ortho-niobates and ortho-tantalates,” Nat. Mater. 5(3), 193–196 (2006).
12. G. Blasse and M. G. J. Leur, “Luminescence and energy transfer in the columbite structure,” Mater. Res. Bull. 20(9), 1037–1045 (1985).
13. R. Cao, Z. Qin, S. Jiang, A. Liang, Z. Luo, and X. Yu, “Enhanced emission of CaNb2 O6 :Sm3+ phosphor by co-doping Na+ /B3+ and the emission properties,” Bull. Mater. Sci. 39(1), 187–193 (2016).
14. L. P. Pavlov, Methods for Determining the Basic Parameters of Semiconductor Materials (Moscow, 1975).
15. N. M. Emanuel and M. G. Kuz’min, Experimental Methods of Chemical Kinetics (Moscow University, Moscow, 1985), pp. 182–186.