ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2020-87-07-49-59

УДК: 520.3

Daytime observation of low-brightness stars (8m–10m) and space objects with a video camera having image summation

For Russian citation (Opticheskii Zhurnal):

Гаранин С.Г., Жуков И.В., Зыков Л.И., Климов А.Н., Копалкин А.В., Опёнов С.Л., Смышляев С.П., Сюндюков А.Ю. Дневное наблюдение звезд слабой яркости (8m–10m) и космических объектов видеокамерой с суммированием изображений // Оптический журнал. 2020. Т. 87. № 7. С. 4959.


Koreshev S.N., Smorodinov D.S., Starovoitov S.O., Frolova M.A. Influence of the structure of the object beam on the quality of images reconstructed using a synthesized Fresnel hologram-projector [in Russian] // Opticheskii Zhurnal. 2020. V. 87. № 7. P. 4959.

For citation (Journal of Optical Technology):

S. G. Garanin, I. V. Zhukov, L. I. Zykov, A. N. Klimov, A. V. Kopalkin, S. L. Openov, S. P. Smyshlyaev, and A. Yu. Syundyukov, "Daytime observation of low-brightness stars (8m–10m) and space objects with a video camera having image summation," Journal of Optical Technology. 87(7), 422-429 (2020).


This paper presents the results of recording stars and space objects under daytime conditions, using a video camera with a silicon photodetector array. Algorithms for summing up to 300 frames of video images and two-point correction of spatial (geometrical) noise of the array are used in real time in the camera. They made it possible to reduce temporal and spatial noise, to increase the visualization threshold of magnitude, and to observe low-brightness stars and space objects with magnitudes of 8m–10m under daytime conditions from various sites in the northern hemisphere of the sky.


daytime observation of stars and space objects, permeability, frame summation, correction of spatial noise

OCIS codes: 110.0115, 040.1490


1. L. V. Rykhlova and N. S. Bakhtigaraev, “New problems of near-Earth astronomy,” in Collection of the Transactions of the Conference on Near-Earth Astronomy—2009, Moscow, 2010, pp. 9–15.

2. A. G. Masevich, “The problem of space contamination (space junk),” in Collection of Scientific Abstracts (Kosmosinform, Moscow, 1993).

3. K. N. Sviridov and N. D. Belkin, “Land-based space system for monitoring space junk,” Konvers. Mashinostr. (3), 36 (1997).

4. B. M. Shustov and L. V. Rykhlova, eds., Asteroid–Comet Danger: Yesterday, Today, Tomorrow (Fizmatlit, Moscow, 2013).

5. I. Z. Avzalov, Yu. V. Bazhanov, P. A. Bakut, M. Yu. Berezentsev, A. N. Karpov, Z. M. Malysheva, V. D. Shargorodski, and Yu. P. Shumilov, “Optoelectronic system for daytime observation of space objects on the background of stars,” Elektromagn. Volny Elektron. Sist. 14(12), 17–23 (2009).

6. H. Hemmati, Near-Earth Laser Communications (CRC Press, Boca Raton, Florida, 2008).

7. “Russian space experiment ‘Laser Communication System’ (SE ‘SLS’),” 27 September 2013,


8. E. A. Grishin, S. N. Melkov, and V. L. Milovidov, “Infrared camera based on Schottky barriers for daytime viewing of the stars,” Prib. Tekh. Eksp. (2), 83–86 (2003).

9. S. G. Garanin, L. I. Zykov, A. N. Klimov, S. M. Kulikov, S. P. Smyshlyaev, V. V. Stepanov, and A. Yu. Syundyukov, “Daytime observation of low-brightness stars (7m–8m) from level terrain,” J. Opt. Technol. 84(12), 816–821 (2017) [Opt. Zh. 84(12), 30–37 (2017)].

10. Brightness of the Daytime Cloudless Sky (Experimental Data) (Gosudarstvenny Opticheski Institut im. S. I. Vavilova, Leningrad, 1971).

11. E. N. Kopatskaya and V. M. Larionov, Photometric and Polarimetric Observation with a CCD Camera on LX200 and AZT-8 Telescopes (St. Petersburg, 2007).

12. CMOS Array CMOSIS CMV300 technical description, 2014.

13. Digital camera RT-1000DC technical description and operating instructions, 2014.

14. I. I. Kremis and D. A. Tolmachev, “Correction of the residual inhomogeneity of an image in a second-generation thermal viewer based on frequency resolution,” Prikl. Fiz. (6), 109–115 (2016).

15. D. S. Brondz and E. N. Kharitonova, “Correcting the geometrical noise of a photodetector array by approximating the transfer characteristics of the array with a T-order polynomial by the least-squares method,” Radioélektron. (11), 29 (2008).

16. N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, I. V. Solyakin, S. N. Starikov, P. A. Cheremkhin, and E. A. Shapkarina, “Increasing the SNR by spatial averaging during image recording,” Vestn, RUDN Ser. Mat. Inf. Fiz. (4), 122–136 (2012).

17. “Standard for Characterization of Image Sensors and Cameras,” EMVA Standard 1288, Release 3.0 (European Machine Vision Association, 29 November 2010).

18. V. L. Tatarski, Wave Propagation in a Turbulent Atmosphere (Izd. Nauka, Moscow, 1967).

19. O. I. Shanin, Adaptive Optical Systems for Correcting Tilts (Tekhnosfera, Moscow, 2013).

20. L. I. Zykov, V. A. Lebedev, S. P. Smyshlyaev, V. V. Stepanov, and A. Yu. Syundyukov, “Estimating the visual threshold of magnitude,” in Collection of Reports of the Ninth All-Russia School of Students, Graduate Students, Young Scientists and Specialists in Laser Physics and Laser Technologies, 2015, pp. 197–203.

21. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” Project Report ETS-63 (Massachusetts Institute of Technology, 1982).

22. J. E. Nelson, “Infrared methods for daylight acquisition of LEO satellites,” Thesis (Air Force Institute of Technology, Ohio, 2004), p. 128.

23. Orbital satellite data,

24. Satellite database,


26. Satellite database from the Heavensat program, http://www.Sat.

27. Satellite database from the Orbitron program,

28. I. I. Krasnorylov and Yu. V. Plakhov, Fundamentals of Space Geodesy (Izd. Nedra, Moscow, 1976).