ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2022-89-08-86-96

УДК: 004.93.1, 004.932.75, 612.84

Synthesis of isognostic text images for visual performance evaluation

For Russian citation (Opticheskii Zhurnal):

Степанец И.Р., Куликов А.Н., Коскин С.А., Жильчук Д.И., Пронин В.С. Синтез изображений изогностических текстов для оценки зрительной работоспособности // Оптический журнал. 2022. Т. 89. № 8. С. 86–96.


Stepanets I.R., Kulikov A.N., Koskin S.A., Zhilchuk D.I., Pronin S.V. Synthesis of isognostic text images for visual performance evaluation [in Russian] // Opticheskii Zhurnal. 2022. V. 89. № 8. P. 86–96.

For citation (Journal of Optical Technology):

I. R. Stepanets, A. N. Kulikov, S. A. Koskin, D. I. Zhil’chuk, and S. V. Pronin, "Synthesis of isognostic text images for visual performance evaluation," Journal of Optical Technology. 89(8), 490-497 (2022).


Subject of study. Principles and technologies for synthesis of test letter charts and standardization of measurements of reading parameters for evaluation of visual performance in the reading process, which is the most important type of human visual activity, are the subjects of the study. Aim of study. The study was aimed at developing a synthesis algorithm for textual isognostic images for quantitatively evaluating reading parameters as indicators of the state of visual performance that ensure the correlation between optical and semantic properties based on optical and optometric standards. Methods of study. A set of test images in the form of texts was created using digital methods for image synthesis. The text images were standardized for measuring reading parameters using optometric methods. Main results. A set of texts was synthesized and standardized considering the complexity and number of symbols in words, the frequency of occurrence and average width of Russian letters, the lengths of sentences, the angular sizes of characters, and the contrast. The text was standardized according to the angular visual acuity and conventional optometric standard ISO 8596, 2009. The synthesized test images comprised sets of text fragments of similar numbers of characters but different angular sizes. The sizes of the characters were correlated with the threshold angular values characterizing visual acuity according to optometric standards. The maximum reading speed, critical print size, and reading acuity were measured in 29 healthy adult test subjects to assess the reproducibility of results obtained using the synthesized test images. The measurements were performed twice for each test subject using two different charts synthesized using the developed method. No statistically significant difference was observed between the measurement results, which indicated good reproducibility of the results obtained using this test. Practical significance. The proposed algorithm for synthesis of standardized texts for assessing reading parameters is the simplest general method for a broad application in routine effectiveness evaluation of the therapy of macular zone pathology and lens fitting for short working distances.


image synthesis, fonts and text, optical characteristics, visual acuity, reading speed, visual performance, MNREAD test

OCIS codes: 330.7325, 330.4460, 330.5000, 330.1070, 330.5370, 170.0170, 330.4300


1. L. N. Gassovskii and V. G. Samsonova, The Eye and Ways to Improve Its Efficiency (Izdatel’stvo Vsesoyuznogo Ob’edineniya Optiko-mekhanicheskoi Promyshlennosti, Leningrad, 1934).
2. L. N. Gassovskii, Optics in Military Affairs (Gosudarstvennoe Tekhniko-teoreticheskoe Izdate’stvo, Leningrad, 1933).
3. Yu. E. Shelepin, A. K. Kharauzov, O. V. Zhukova, S. V. Pronin, M. S. Kupriyanov, and O. V. Tsvetkov, “Masking and detection of hidden signals in dynamic images,” J. Opt. Technol. 87(10), 624–632 (2020) [Opt. Zh. 87(10), 89–102 (2020)].
4. A. A. Lamminpiya, S. V. Pronin, and Yu. E. Shelepin, “Spatial frequency text filtering for local and global analysis,” J. Opt. Technol. 85(8), 476–481 (2018) [Opt. Zh. 85(8), 39–45 (2018)].
5. D. B. Elliott, M. Trukolo-Ilic, J. G. Strong, R. Pace, A. Plotkin, and P. Bever, “Demographic characteristics of the vision-disabled elderly,” Invest. Ophthalmol. Visual Sci. 38(12), 2566–2575 (1997).
6. S. A. Koskin and I. R. Stepanets, “Standardized ophthalmological tests for evaluating reading parameters: a brief historical review,” Oftal’mol. Vedomosti 13(4), 47–55 (2020).
7. S. Trauzettel-Klosinski and K. Dietz, “Standardized assessment of reading performance: the new international reading speed texts IReST,” Invest. Ophthalmol. Visual Sci. 5(9), 5452–5461 (2012).
8. G. E. Legge, J. A. Ross, A. Luebker, and J. M. LaMay, “Psycho-physics of reading. VIII. The Minnesota Low-Vision Reading Test,” Optom. Visual Sci. 66(12), 843–853 (1989).
9. S. J. Ahn, G. E. Legge, and A. Luebker, “Printed cards for measuring low-vision reading speed,” Vis. Res. 35(13), 1939–1944 (1995).
10. A. Calabrèse, C. Owsley, G. McGwin, and G. E. Legge, “Development of a reading accessibility index using the MNREAD acuity chart,” JAMA Ophthalmol. 134(4), 398–405 (2016).
11. H. Nakamura, K. Oda, K. Fujita, and M. Yuzawa, “The prescription of reading aids with the MNREAD-J reading acuity chart for low vision patients with AMD,” Jpn. Orthopt. J. 28, 253–261 (2000).
12. C. Tamaki, C. S. Kallie, G. E. Legge, S. R. Salomão, R. Cudeck, and J. S. Mansfield, “Validation of the MNREAD–Portuguese Continuous–Text Reading–Acuity Chart,” Invest. Ophthalmol. Visual Sci. 45(13), 43–58 (2004).
13. G. Virgili, C. Cordaro, A. Bigoni, S. Crovato, P. Cecchini, and U. Menchini, “Reading acuity in children: evaluation and reliability using MNREAD charts,” Invest. Ophthalmol. Visual Sci. 45(9), 3349–3354 (2004).
14. A. ˙Idil, D. Çali ¸skan, and N. B. Idil, “Development and validation of the Turkish version of the MNREAD visual acuity charts,” Turk. J. Med. Sci. 41(4), 565–570 (2011).
15. A. Mataftsi and A. Bourtoulamaiou, A.-B. Haidich, A. Antoniadis, V. Kilintzis, I. T. Tsinopoulos, and S. Dimitrakos, “Development and validation of the Greek version of the MNREAD acuity chart,” Clin. Exp. Optom. 9(1), 25–31 (2013).
16. W. Radner, S. Radner, and G. Diendorfer, “A new principle for the standardization of long paragraphs for reading speed analysis,” Graefe’s Arch. Clin. Exp. Ophthalmol. 254(1), 177–184 (2016).
17. A. Calabrèse, A. M. Cheong, S. H. Cheung, Y. He, M. Y. Kwon, J. S. Mansfield, A. Subramanian, D. Yu, and G. E. Legge, “Baseline MNREAD measures for normally sighted subjects from childhood to old age,” Invest. Ophthalmol. Visual Sci. 57(8), 3836–3843 (2016).
18. T. S. Egorova, “Charts for near vision examination in low vision patients,” Ross. Oftal’mol. Zh. 12(1), 86–91 (2019).
19. R. Bringhurst, The Elements of Typographic Style (Hartley and Marks Publishers, Vancouver, 1999).
20. G. E. Legge and C. A. Bigelow, “Does print size matter for reading? A review of findings from vision science and typography,” J. Vis. 11(5):8, 1–22 (2011).
21. G. E. Legge, Psychophysics of Reading in Normal and Low Vision (CRC Press, Boca Raton, 2007).
22. S. A. Sharov and O. N. Lyashevskaya, New Frequency Word Book of Russian Vocabulary (Azbukovnik, Moscow, 2009).