DOI: 10.17586/1023-5086-2023-90-01-60-75
УДК: 535.51, 535.361, 616.15-07
Polarization non-invasive method of blood hematocrit monitoring
Full text on elibrary.ru
Publication in Journal of Optical Technology
Хлынов Р.Д., Рыжова В.А., Коротаев В.В., Ярышев С.Н., Джамийков Т.С., Маринов М.Б. Поляризационный неинвазивный метод мониторинга гематокрита крови // Оптический журнал. 2023. Т. 90. № 1. С. 60–75. http://doi.org/10.17586/1023-5086-2023-90-01-60-75
Khlynov R.D., Ryzhova V.A., Korotaev V.V., Yarishev S.N., Djamiykov T.S., Marinov M.B. Polarization non-invasive method of blood hematocrit monitoring [in Russian] // Opticheskii Zhurnal. 2023. V. 90. No 1. P. 60–75. http://doi.org/10.17586/1023-5086-2023-90-01-60-75
R. D. Khlynov, V. A. Ryzhova, V. V. Korotaev, S. N. Yarishev, T. S. Djamiykov, and M. B. Marinov, "Noninvasive polarization-based technique for hematocrit monitoring," Journal of Optical Technology. 90(1), 33-41 (2023). https://doi.org/10.1364/JOT.90.000033
Subject of study. Polarization images, corresponding to the coordinate distributions of the polarization state parameters of optical radiation scattered by biological objects, which are characterized by different levels of blood hematocrit. Polarization images were formed as a result of probing laser radiation with a given state of polarization of blood-containing tissue through the fingernail plate of the little finger of the person’s left hand. Purpose of work. To analyze the possibilities of using the active video polarimetry method for non-contact monitoring of blood hematocrit in real time. To develop the informative criteria for determination the difference in the level of blood hematocrit in different states of a biological object, this work was carried out. Method. Physical modeling of transformation of the polarized radiation parameters during its interaction with a biological object. An optical scheme of the Stokes Video Polarimeter layout for irradiance distributions recording on the sensitive area of matrix photodetector with a single field of analysis was implemented. Digital images processing using Stokes and Mueller matrix formalism was performed. Comparative statistical analysis of the coordinate distributions of light polarization state parameters (degree of polarization, azimuth and ellipticity) was carried out to identify the possibility to determine differences in the hematocrit level in human blood. Main results. A new approach to non-invasive blood hematocrit level monitoring based on the polarization-optical method was proposed. We obtained coordinate distributions and histograms of the light polarization state parameters for two participating volunteers, whose body states are guaranteed to differ by the blood hematocrit level. Statistical analysis was performed, which showed that significant differences in the statistical moments of the second–fourth orders of light polarization parameters are the most informative diagnostic indicators in the comparative analysis of biological objects with different blood hematocrit levels. Practical significance. With further development, the proposed method can find application in both medical diagnostics and therapy in emergency situations. Timely detection of significant deviations from normal hematocrit based on automated calculation and analysis of the developed informative criteria will allow continuous monitoring of blood hematocrit during surgical operations and effective real-time correction of blood viscosity.
Acknowledgment: the authors are grateful to the Research Center for Optoelectronic Instrumentation of St. Petersburg University ITMO and Research and Development Sector of the Technical University of Sofia for material and financial support.
polarization, blood hematocrit, scattering, Stokes vector, polarization images, coordinate distributions, statistical analysis
OCIS codes: 120.5410, 120.0120, 110.5405
References:- He C., He H., Chang J., et. al. Polarization optics for biomedical and clinical applications: a review // Light Sci. Appl. 2021. № 10. P. 194. https://doi.org/10.1038/s4137702100639x
- Dybas J., Alcicek F.C., Wajada A., Kaczmarska M., Zimna A., Bulat K., Blat A., Stepanenko T., Mohaissen T., SzczesnyMalysiak E., PerezGuaita D., Wood B.R., Marzec K.M. Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques // TrAC Trends Analyt. Chem. 2022. V. 146. P. 116481. https://doi.org/10.1016/j.trac.2021.116481
- Wang J., Yuan S., Qi J., Zhang Q., Ji Z. Advantages and prospects of optical coherence tomography in interventional therapy of coronary heart disease (Review) // Experimental and Therapeutic Medicine. 2022. V. 23. P. 1–19. https://doi.org/10.3892/etm.2022.11180
- Li X., Han Y., Wang H., Liu T., Chen S., Hu H. Polarimetric imaging through scattering media: A review // Front. Phys. 2022. V. 10. Р. 815296. https://doi.org/10.3389/fphy.2022.815296
- World health statistics 2022: monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization, 2022. Licence: CC BYNCSA 3.0 IGO.
- Bento D., Lopes S., Maia I., Lima R., Miranda J.M. Bubbles moving in blood flow in a microchannel network: The effect on the local hematocrit // Micromachines. 2020. V. 11(4). Р. 344. https://doi.org/10.3390/mi11040344
- Tuchin V.V. Tissue optics: Light scattering methods and instruments for medical diagnosis. Bellingham, Washington, USA: SPIE Press, 2015. 988 p. https://doi.org/10.1117/3.1003040
- Capocasale G., Panzarella V., Rodolico V., Di Fede O., Campisi G. In vivo optical coherence tomography imaging in a case of mucous membrane pemphigoid and a negative Nikolsky’s sign // J. Dermatology. 2018. V. 45(5). P. 603–605. https://doi.org/10.1111/13468138.14267
- Krutikov V.N., Zolotarevskij Yu.M., Lyaskovskij V.L., et al. Method for diagnosing of ischemic heart disease // Patent Rus. Federation № 2595483 C2. 2014. URL: https://patentimages.storage.googleapis.com/41/76/64/5a08a562d1d427/RU2595483C2.pdf
- Bukaty V.I., Pavlova Ya.V., Sakovich S.I., et al. Interaction of lowintensity laserm light with human blood // Bulletin of the Tomsk Polytechnic University. 2007. V. 310. № 2. P. 113–116. URL: https://earchive.tpu.ru/handle/11683/349
- Yoon G.W., Jeon K.J. Noninvasive hematocrit monitoring based on parameteroptimization of a LED finger probe // J. Opt. Soc. Korea. 2005. V. 9. P. 107–110. https://doi.org/10.3807/JOSK.2005.9.3.107
- Meinke M., Müller G., Helfmann J., Fribel M. Empirical model function to calculate hematocritdepend optical properties of human blood // Appl. Opt. 2007. V. 46. P. 1742–1753. https://doi.org/10.1364/ao.46.001742
- Chipman R.A., Lam W.S.T., Young G. Polarized light and optical system // Optical sciences and applications of light (Taylor & Francis) / Boca Raton: CRC Press, 2018. 1036 p. https://doi.org/10.1201/9781351129121
- Mahato K.U.S., Mazumder K.K.N. Polarizationresolved StokesMueller imaging: A review of technology and applications // Laser Med. Sci. 2019. V. 34. P. 1283–1293. https://doi.org/10.1007/s10103019027521
- Peyvasteh M., Dubolazov A., Popov A., Ushenko A., Ushenko Y., Meglinski I. Twopoint Stokes vector diagnostic approach for characterization of optically anisotropic biological tissues // J. Phys. D: Appl. Phys. 2020. V. 53(39). P. 395401. https://doi.org/10.1088/13616463/ab9571
- Yao B.X., Gu N.T., Raor C.H. Compact simultaneous fullstokes vector polarimeter based on microretarder arrays // J. Opt. Technol. 2018. V. 85. P. 238–243. https://doi.org/10.1364/JOT.85.000238
- Borovkova M., Peyvasteh M., Dubolazov O., et al. Complementary analysis of Muellermatrix images of optically anisotropic highly scattering biological tissues // J. Eur. Opt. Soc.Rapid Publ. 2018. V. 14. P. 20. https://doi.org/10.1186/s4147601800859
- Khlynov R.D., Ryzhova V.A., Konyakhin I.A., Korotaev V.V. Robotic polarimetry system based on image sensors for monitoring the rheological properties of blood in emergency situations // Smart electromechanical systems. studies in systems, decision and control / Ed. by Gorodetskiy A.E., Tarasova I.L. 2022. V. 419. P. 8–15. https://doi.org/10.1007/9783030970048_15
- Qinrui Cheng, Ting Xu, Peisen Huang. Systematic error analysis and parameter design of a visionbased phase estimation method for ultraprecision positioning // Opt. Exp. 2022. V. 30. № 5. P. 8330–8344. https://doi.org/10.1364/OE.453670