ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-10-80-92

УДК: 681.78, 535.417.2

Parametric laser rangefinder with passive system of thermostabilization

For Russian citation (Opticheskii Zhurnal):

Тихонов Е.В., Маркушин Г.Н., Кошелев А.В., Векшин Ю.А., Алмазов А.А., Швалев А.В., Коротаев В.В. Параметрический лазерный дальномер с пассивной системой термостабилизации // Оптический журнал. 2023. Т. 90. № 10. С. 80–92. http://doi.org/10.17586/1023-­5086­-2023­-90-­10­-80-­92

 

Tikhonov E.V., Markushin G.N., Koshelev А.V., Vekshin Yu.A., Аlmazov А.А., Shvalev А.V., Korotaev V.V. Parametric laser rangefinder with passive system of thermostabilization [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 10. P. 80–92. http://doi.org/10.17586/1023­5086­2023­90­10­80­92

 

 

 

For citation (Journal of Optical Technology):

E. V. Tikhonov, G. N. Markushin, A. V. Koshelev, Yu. A. Vekshin, A. A. Almazov, A. V. Shvalev, and V. V. Korotaev, "Parametric laser rangefinder with a passive thermal stabilization system," Journal of Optical Technology. 90(10), 609-616 (2023).  https://doi.org/10.1364/JOT.90.000609

Abstract:

Subject of study. Development of a small­sized pulsed laser rangefinder with a passive thermal stabilization system. Objective. Creation of a sample of a laser rangefinder generating pulsed laser radiation with wavelength l = (1,57 ± 0,04) µm. Method. A theoretical study of the influence of the rangefinder operating wavelength on the propagation of laser radiation in the atmosphere was carried out by the finite difference method in a time­dependent formulation. The mode composition of radiation was estimated using a standard numerical solution of the Fresnel–Kirhhoff diffraction integral. The methods of pyroelectric registration were used for estimation of energy parameters of laser radiation. Main results. The small­sized laser rangefinder generating laser radiation in the near­IR range at a wavelength of (1,57 ± 0.04) µm with a pulse repetition rate of up to 20 Hz and a pulse energy of up to 17 mJ has been developed. The rangefinder emitter is built on the basis of a composite stable semi­confocal optical resonator. In one of the resonator parts a nonlinear passive conversion of radiation l = (1.064 ± 0.025) µm, generated by active media based on a stoichiometric Nd:YAG single crystal, in signal wave with l = (1.57 ± 0.04) µm occurs. Scientific novelty. The research demonstrates the possibility of maintaining stable generation at a temperature mismatch between the absorption spectrum of the active media and the emission spectrum of the laser diode bar by up to 22 nm, which makes it possible to abandon the use of a thermal stabilization system of the diodes bar. Practical significance. It is shown that the use of radiation with l = (1.57 ± 0.04) µm is more preferable for tasks of pulsed laser ranging in comparison with radiation with l = (1.064 ± 0.025) µm because of less scattering on atmospheric aerosol. The active media is pumped by quasi­continuous wave (QCW) multispectral laser diodes array with total average radiation pulse power of 2200 W, which makes it possible to abandon active thermal stabilization and optimize the mass and dimensional parameters of the product.

Keywords:

laser rangefinder, parametric light generation, laser diodes array, multispectrality, absorption spectrum, scattering of laser radiatio

OCIS codes: 120.0280, 110.4234, 100.4145

References:
  1. Zverev G.М., Golyaev Yu.D. Lasers on crystals and their application. М.: Rikel, Radio and communications, 1994. 312 p.
  2. Prokhorov А.М. Handbook of lasers in two volumes. Т. 1. Мosсow: Soviet radio, 1978. 504 p.
  3. Donchenko V.А., Kabanov М.V., Samokhvalov I.V. Propagation of optical will in disperse media. 2nd edition, rev. and additional. Тоmsk: Publishing House NTL, 2014. 460 p.
  4. Bondarenko D.А., Karasik V.Е., Мagdich L.N. etc. Small­sized erbium laser emitter with diode pumping and acousto­optic Q­switching // Bulletin of MSTU named in honor of N.E. Bauman. Instrumentation ser. 2017. № 5. P. 14–30. https://doi.org/10.18698/0236­2017­5­14­30
  5. Bykov V.N., Sadovoy А.G. Efficiency of an erbium glass with passive resonator Q­switching // Quantum Electronics. 2005. V. 32. № 3. P. 202–204. https://doi.org/10.1070/QE2002v032n03ABEH002160
  6. Izyneev А.А., Sadovskiy P.I., Sadovskiy S.P. About the possibility of increasing pulse energy of an erbium minilaser on glass with passive Q­switching // Quantum Electronics. 2010. V. 40. № 5. P. 389–392. https://doi.org/10.1070/QE2010v040n05ABEH014291
  7. Krylov А.А. Compact lasers on Yb:Er glass with diode pumping and active Q­switching for ranging // Thesis for the degree of candidate of technical sciences. St. Petersburg: ITMO University, 2018. 144 p.
  8. Danileiko Yu.К., Manenkov А.А., Prokhorov А.М., Haimov­Malkov V.Ya. Surface destruction of ruby crystals by laser radiation // JTPh. 1970. V. 58. № 1. P. 31–36.
  9. Коstenkov S.N. Attenuation of the intensity of laser radiation when interacting with highly dispersed media // PhD dissertation. Izhevsk: Udmurt State University, 2015. 123 p.
  10. Palashov О.V., Khazanov Е.А., Mukhin I.B., Smirnov А.N., Mironov I.А., Dukelsky К.V., Garibin Е.А., Fedorov P.P., Kuznetsov S.V., Оsiko V.V., Basiev Т.Т., Gainutdiniv R.V. Measurement of optical absorption of samples of CaF2 nanoceramics // Quantum Electronics. 2009. V. 39 (10). P. 943–947. https://doi.org/10.1070/QE2009v039n10ABEH014008
  11. Kachmarek F. Introduction to laser physics.  Transl. from Polish by V.D. Novikov. М.: Mir, 1980. 540 p.
  12. Babichev А.V., Gladyshev А.G., Denisov D.V. et al. Heterostructures of quantum­cascade lasers with non­selective overgrowth by the method of gas­phase epitaxy // Letters in JTPh. 2021. V. 47. № 24. P. 46–50. https://doi.org/10.21883/PJTF.2020.09.49371.18243
  13. Ladugin М.А., Bagaev Т.А., Мarmaluk А.А., Coval Yu.P., Koniaev V.P., Sapozhnikov S.М., Lobintsov А.V., Simakov V.А. Compact array of laser diodes based on epitaxially integrated AlGaAs/GaAs heterostructures // Quantum Electronics. 2018. V. 48. № 11. P. 993–995. https://doi.org/10.1070/QEL16812
  14. Ladugin М.А., Мarmaluk А.А., Padalitsa А.А., Telegin К.Yu. et al. Laser diode arrays based on AlGaAs/GaAs quantum­well heterostructures with efficiency up to 62% // Quantum Electronics. 2017. V. 47. № 8. P. 693–695. https://doi.org/10.1070/QEL16441
  15. Osipov V.V., Lisenkov V.V., Platonov V.V., Tikhonov Е.V. Processes of interaction of laser radiation with porous transparent materials during their ablation // Quantum Electronics. 2018. V. 48. № 3. P. 235–243. https://doi.org/10.1070/QEL16590
  16. Bykov V.P., Silichev О.О. Lasers resonators. М.: FIZMATLIT, 2004. 320 p.
  17. Zvelto О. Principles of lasers. 4nd edition. St. Petersburg: Publishing house «Lan», 2008. 720 p.