ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-06-50-600

УДК: 621.397

Small-sized thermal imaging camera with micro-scanning

For Russian citation (Opticheskii Zhurnal):

Кремис И.И., Гладков Р.А., Турбин А.В., Алдохин П.А., Калинин В.С. Малогабаритная тепловизионная камера с микросканированием // Оптический журнал. 2023. Т. 90. № 6. С. 50–60.


Kremis I.I., Gladkov R.A., Turbin A.V., Aldokhin P.A., Kalinin V.S. Small-sized thermal imaging camera with micro-scanning [In Russian] // Opticheskii Zhurnal. 2023. V. 90. № 6. P. 50–60.

For citation (Journal of Optical Technology):

Igor Kremis, Roman Gladkov, Alexey Turbin, Pavel Aldokhin, and Vitaly Kalinin, "Small-sized thermal imaging camera based on micro-scanning," Journal of Optical Technology. 90(6), 317-323 (2023)


Subject of study. Thermal imaging camera with micro­scanning based on small­format, 320ґ256 photodiodes made of cadmium­mercury telluride, matrix photodetector, spectral range 8–10 microns. Aim of study. Creation of a compact thermal imaging camera with a spectral range of 8–10 microns based on a small­format cadmium­mercury telluride matrix photodetector using gearless electromechanical drives for changing fields of view, subfocusing, calibration and micro­scanning of the scene to improve spatial resolution parameters and threshold sensitivity. Method. The combined use of technical solutions for the mechanical movement of optical components, correction of residual inhomogeneity of the sensitivity of the photodetector and microscanning of the observation scene. Main results. A thermal imaging camera with micro­scanning based on a small­format (320ґ256 pixels of cadmium­mercury telluride) matrix photodetector with a spectral range of 8–10 microns has been developed. The camera uses gearless electromechanical drives allowing micro­scanning of the observation scene, changing fields of view, focusing and channel calibration. The camera is equipped with 4­fold zoom range lens with a maximum field of view of 21.7°ґ17.5° and a spatial resolution of 2.27 mrad–1 in micro­scan mode. The combination of the proposed solutions made it possible to obtain a high­quality thermal imaging image with a temperature difference equivalent to noise equal to 23 mK. Practical significance. The thermal imaging camera can work in the field of non­destructive testing, surveillance and environmental monitoring. The proposed technical solutions will be useful for evaluating the high­resolution parameters and threshold sensitivity of thermal imaging mechanisms using small­format matrix photodetectors.


filtration, two-point correction, thermal imager, thermal imaging camera, microscanner

OCIS codes: 250.0040, 250.4745, 230.2090, 230.0250, 100.2960, 100.2550, 100.2000

1. Kulchitsky N., Naumov A., Startsev V. Cooled IR photodetectors on cadmium-mercury-tellurium: state and prospects of development // Electronics: science, technology, business. 2020. V. 197. № 6 (00197). P. 114–121. 10.22184/1992-4178.2020.
2. Sidorov Yu.G., Sabinina I.V., Sidorov G.Yu., Vasiliev V.V., Yakushev M.V., Makarov Yu.S., Zverev A.V., Marchishin I.V., Dvoretsky S.A., Predein A.V., Varavin V.S., Marin D.V., Craftsman V.G., Gorshkov D.V., Latyshev A.B. Photodetector modules based on HPP KRT MLE at wavelengths of 3–5 and 8–10 microns in a format up to 2000×2000 // Proceedings of the XXV International Scientific and Technical Conference on Photoelectronics and Night Vision Devices. Moscow: NGO "Orion", 2018. P. 8–11.
3. Gindin P. Karpov V. Matrix and submatrix photodetector modules // Photonics. 2013. T. 42. № 6. P. 62–72.
4. Reibel Y., Espuno L. High performance infrared fast cooled detectors for missile applications // Proc. SPIE 9819. Infrared Technology and Applications XLII.
2016. (20 May). V. 98190I. 14 p. 10.1117/12.2230431
5. Kremis I.I., Kalinin V.S., Fedorinin V.N., Korsakov Yu.M., Shatunov K.P. Scanning thermal imaging device based on a Russian photodetector // Applied
Physics. 2016. № 5. P. 108–114.
6. Wang X., Feng Z., Zhang J., Yang Z. Characterization of the performance of micro-scanning infrared imager // International Journal of Infrared and Millimeter
Waves. 2004. V. 25. P. 1657–1668.
7. Cocle O., Rannou C., Forestier B., Jougla P., Bois P., Costard E., Manissadjian A., Gohier D. Qwip compact thermal imager: Catherine-XP and its evolutions // Proc. SPIE 6542. Infrared Technology and Applications XXXIII. 2007. (14 May). V. 654234. 12 p. 10.1117/12.723720
8. John M., John L. Imagery improvements in staring infrared imagers by employing subpixel microscan // Optical Engineering. 2005. V. 44(5). 9 p.
9. Yakushenkov Yu.G., Tarasov V.V. Infrared systems of the viewing type. M.: Logos, 2004. 452 p.
10. Tarasov V.V., Yakushenkov Yu.G. Trends in the development of infrared systems of the "looking" type // Special equipment. 2004. № 1. 443 p.
11. Xiubao S., Chen Q., Gu G. Micro-scanning system using flat optics for resolution improvement of infrared images // Optik. 2013. V. 124. Iss. 16. P. 2292–2297.
12. Wang X. R., Zhang J.Q., Feng Z.X., Relationship between microscanned image quality and fill factor of detectors // Appl. Opt. 2005. V. 44(21). P. 4470-4. 10.1364/AO.44.004470
13. Wu X., Cai Y. Techniques of optical microscan in staring infrared imaging system // J. Infrared Millim. Waves. 2007. V. 26. P. 10–14.
14. Miller J., Wiltse J. Benefits of microscan for staring infrared imagers // SPIE Defense. 2004. 12 p. 10.1117/12.541432
15. Meijing G., Weilong W., Wei X., Jingyuan W. Optical microscanning X-ray real-time imaging system // International Conference on Mechatronics, Electronic, Industrial and Control Engineering. MEIC. 2014. 10.2991/meic-14.2014.251
16. Wiltse J., Miller J. Imagery improvements in staring infrared imagers by employing subpixel microscan // Optical Engineering. 2005. V. 44(5).
17. Kremis I.I., Gladkov R.A. Microscanning devices for thermal imagers in the range of 8–12 microns based on rotating plates from Ge // Successes of applied physics. 2018. № 4. V. 7. P. 390–400.
18. Kremis I.I. Investigation of the method of correction of residual inhomogeneity of a thermal imaging channel with microscanning // Successes of applied physics. 2018. № 3. V. 6. P. 252–259.