ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2023-90-07-38-50

УДК: 681.78, 343.77

Scintillation optical-electronic converter of gamma radiation based on silicon photomultiplier

For Russian citation (Opticheskii Zhurnal):

Бокатый И.О., Коротаев В.В., Романова Г.Э., Тимофеев А.Н., Рыжова В.А. Сцинтилляционный оптико-электронный преобразователь гамма-излучения на основе кремниевого фотоэлектронного умножителя // Оптический журнал. 2023. Т. 90. № 7. С. 38–50. http://doi.org/10.17586/1023-5086-2023-90-07-38-50

 

Bokaty I.O., Korotaev V.V., Romanova G.E., Timofeev A.N., Ryzhova V.A. Scintillation optical-electronic converter of gamma radiation based on silicon photomultiplier [in Russian] // Opticheskii Zhurnal. 2023. V. 90. № 7. P. 38–50. http://doi.org/10.17586/1023-5086-2023-90-07-38-50

For citation (Journal of Optical Technology):

Ilya O. Bokatyi, Valery V. Korotaev, Galina E. Romanova, Alexander N. Timofeev, and Viktoria A. Ryzhova, "Scintillation optical-electronic converter of gamma radiation based on a silicon photomultiplier," Journal of Optical Technology. 90(7), 376-383 (2023).  https://doi.org/10.1364/JOT.90.000376

Abstract:

Subject of study. Scintillation optical-electronic converter of gamma radiation based on silicon photomultiplier. Purpose of the work. Development of an optical-electronic converter of gamma radiation for personal use and operation as part of the distributed radiation monitoring systems with an increased range of linearity of the transfer characteristic and improved relative energy resolution for personal use and work as part of distributed radiation monitoring systems in the field. Method. Analysis of signal conversion processes in a scintillation optical-electronic converter of gamma radiation, computer simulation and experimental study of the converter. Main results. The optical-electronic gamma-radiation converter for personal use and work as part of the distributed radiation monitoring systems in the field was developed. A method for choosing the dimensions of the optical system for matching of a scintillation crystal and a silicon photomultiplier, as well as the type and parameters of its reflective surfaces was developed, which made it possible to increase the linearity range of the transducer transfer characteristic by increasing the uniformity of the photomultiplier irradiation. An algorithm for estimating the contribution of signal losses from photons arriving at a microcell of a silicon photomultiplier during the restoration of its sensitivity to the relative energy resolution of the converter in experimental studies of the uniformity of irradiation distribution is proposed. Practical significance. An optical-electronic converter of gamma radiation has been developed with an increased up to two times the range of linearity of the transfer characteristic with an integral nonlinearity of the energy characteristic of no more than 1% and improved by at least 10% relative energy resolution for the peak energy of 662 keV of the reference 137Cs source. The optical-electronic converter is designed for personal use and operation as part of distributed radiation monitoring systems in the field.

Keywords:

optical-electronic converter of gamma radiation, gamma spectrometer, silicon photoelectronic multiplier, scintillation crystal, energy resolution, radiation monitoring

OCIS codes: 120.0280, 230.0250, 290.5930, 040.5250, 300.6350

References:

1. Vasiliev A., Lipovskiy D., Denisenya Y. Necessity of creating continuous monitoring systems to ensure radiation safety [in Russian] // ANRI. 2009. № 2. P. 68–71.
2. Ullo S.L., Sinha G.R. Advances in smart environment monitoring systems using IoT and sensors // Sensors. 2020. V. 20. № 11. P. 3113. https://doi.org/10.3390/s20113113
3. Repin L.V., Biblin A.M., Kovalev P.G., et al. The automated system of radiation exposure control (ASCRE) for rospotrebnadzor: Creation history, applicability and development [in Russian] // Radiation Hygiene. 2014. V. 7. № 3. P. 44–53.
4. Vukolov A.V., Gogolev A.S., Cherepennikov Y.M., et al. Portable gamma spectrometer [in Russian] // Izv. Universities. Physics. 2016. V. 57. № 11-2. P. 270–274.
5. Nikishkin T.G. Development of a model of a portable scintillation detector of gamma radiation based on solidstate micropixel avalanche photodiodes [in Russian] // Izv. Universities. Physics. 2021. V. 64. № 2-2 (759). P. 73–77.
6. Grodzicka V., Moszyński M., Szczęśniak T., et al. Energy resolution of small scintillation detectors with SiPM light readout // J. Instrument. 2013. V. 8. № 2. https://doi.org/10.1088/1748-0221/8/02/P02017
7. Huang T., Fu O., Lin S., et al. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer // J. NIMA. 2017. V. 851. P. 118–124. http://dx.doi.org/10.1016/j.nima.2017.01.068
8. Becker E. M. The MiniSpec: A low-cost, compact, FPGAbased gamma spectrometer for mobile applications // Master Thesis. Oregon State University, 2013. 100 p.
9. Chankyu K., Hyoungtaek K., Jongyul K., et al. Replacement of a photomultiplier tube in a 2-inch thallium-doped sodium iodide gamma spectrometer with silicon photomultipliers and a light guide // J. NET. 2015. V. 47. № 4. P. 479–487. https://doi.org/10.1016/j.net.2015.02.001
10. Jamil M.S., Jamil M.A., Mazhar A., et al. Smart environment monitoring system by employing wireless  sensor networks on vehicles for pollution free smart cities // Pro. Eng. 2015. V. 107. P. 480–484. https://doi.org/10.1016/j.proeng.2015.06.106
11. Becker E., Farsoni A., Alhawsawi A., et al. Small prototype gamma spectrometer using CsI(Tl) scintillator coupled to a solid-state photomultiplier // IEEE TNS. 2013. V. 60.2. P. 968–972. https://doi.org/10.1109/TNS.2012.2228236
12. Grodzicka-Kobylka M., Szczesniak T., Moszyński M. Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators // J. NIMA. 2017. V. 856. P. 53–64. https://doi.org/10.1016/j.nima.2017.03.015
13. Ishanin G.G., Chelibanov V.P. Optical photo receivers [in Russian] / Ed. by Professor Korotaev V.V. St. Petersburg: Publishing house "Lan", 2014. 304 p. (Textbooks for universities. Special literature). ISBN 978-5-8114-1048-4
14. Golashvili T.V., Chechev V.P., Lbov A.A., et al. Handbook of Nuclides-2, Ed. 2nd, add. and reworked [in Russian] / Ed. by Mikhailov V.N. Moscow: FSUE "CNIIatominform" Publ., 2002. 348 p. ISBN-87911-077-X
15. Romanova G., Radilov A., Denisov V., et al. Simulation and research of the gamma-ray detectors based on the CsI crystals and silicon photomultipliers // Proc. SPIE 10231, Optical Sensors. 2017. 102311 G. https://doi.org/10.1117/12.2264921
16. McElroy D., Sung-Cheng H., Hoffman E. The use of retro-reflective tape for improving spatial resolution of scintillation detectors // IEEE TNS. 2002. V. 49. № 1. P. 165–171. https://doi.org/10.1109/TNS.2002.998746
17. Akimov Y. Nuclear radiation detectors based on inorganic scintillators [in Russian] // Phys. of Elem. Part. and A. N. 1994. V. 25. № 1. P. 229–284.
18. Shah K., Glodo J., Klugerman M., et al. High energy resolution scintillation spectrometers // IEEE TNS. 2004. V. 51. № 5. P. 2395–2399. https://doi.org/10.1109/TNS.2004.832616