ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-10-25-33

УДК: 621.327.8:535.41

Operation simulation of a distributed fiber optic current sensor using Brillouin scattering

For Russian citation (Opticheskii Zhurnal):

Янукович Т.П., Исмайилова А.С. Моделирование работы распределённого оптоволоконного сенсора силы тока с использованием рассеяния Мандельштама–Бриллюэна // Оптический журнал. 2024. Т. 91. № 10. С. 25–33. http://doi.org/10.17586/1023-5086-2024-91-10-25-33

 

Yanukovich T.P., Ismayilava A.S. Operation simulation of a distributed fiber optic current sensor using Brillouin scattering [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. P. 25–33. http://doi.org/10.17586/1023-5086-2024-91-10-25-33

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Distributed fiber optic current sensor based on Brillouin scattering on the basis of fiber deformation. Aim of study. Simulation of Brillouin scattering in an optical fiber in the presence of deformation caused by the Ampere force to calculate the parameters of the current sensor. Method. Calculation of the transfer function for a three-wave interaction of a pump wave, a probe wave and an acoustic wave, taking into account the characteristic amplification factors of stimulated Mandelstam–Brillouin scattering. Main results. The operation of a current sensor based on Brillouin scattering was simulated. The value of the transfer function is studied, the effect of temperature exposure is considered when using optical fiber with the addition of germanium oxide. The operation of the sensor was simulated with a limiting value of the measured current of 50 kA, as well as obtaining a sensitivity of 72 A. The possibility of reducing the measurement time by reducing the range of modulation frequency changes. The range 100 kHz – 300 MHz with a spatial resolution of 0.5 m with an increment of frequency of 100 kHz with a fiber length of 500 m was chosen. Practical significance. A simulation was carried out to estimate the parameters of the measuring system based on the mathematical model of stimulated Mandelstam–Brillouin scattering in an optical fiber. The spatial resolution of the sensor when determining the length and location of fiber sections is 0.5 m when using amplitude modulation of the optical signal in the range from 100 kHz to 700 MHz with a sensitive fiber length of 500 m. The resolution of the sensor is 72 A at the difference between the pump and test radiation frequencies Δf = 500 kHz, maximum current value 50 kA at a difference in frequencies of pump and test radiation Δf = 50 MHz, which is twice the maximum value of the measured current in previously announced sensors of this type.

Keywords:

stimulated Brillouin scattering, optical fiber, current sensor

OCIS codes: 060.2370, 290.5830

References:

1. Du J., Tao Y., Liu Y. et al. Highly sensitive and reconfigurable fiber optic current sensor by optical recirculating in a fiber loop // Opt. Express. 2016. V. 24. № 16. P. 17980–17988. https://doi.org/10.1364/OE.24.017980
2. Yang F., Hou X., Huang Y. et al. Optical fiber current sensor with small size for the high voltage watt-hour meter // International Symposium on  ptoelectronic Technology and Application 2016. SPIE. Beijing, China. October 25, 2016. V. 10158. P. 172–177. https://doi.org/10.1117/12.2246745
3. Wuilpart M., Vanus B., Andrasan A. et al. Study of a fibre optics current sensor for the measurement of plasma current in ITER // Sixth European Workshop on Optical Fibre Sensors. Limerick, Ireland. May 31 — June 3, 2016. Proc. SPIE. V. 9916-OL. P. 78–81. https:// doi.org/10.1117/12.2236814
4. Song C., Zhizhong G., Guoqing Z. et al. The analysis on temperature characteristic of fiber optic current sensor ratio error // 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). IEEE. Qinhuangdao, China. September 18–20, 2015. P. 781–785. https://doi.org/10.1109/IMCCC.2015.171
5. Prakash A., Das S., Kumar M. et al. Development of fiber optic current sensor for electric power industry application // International Conference on Fibre Optics and Photonics. Chennai, India. December 9–12, 2012. TPo. 26. https://doi.org/10.1364/PHOTONICS.2012.TPo.26
6. Bohnert K., Frank A., Yang L. et al. Polarimetric fiber-optic current sensor with integrated-optic polarization splitter // Journal of Lightwave Technology. 2019. V. 37. № 14. P. 3672–3678. https://doi.org/10.1109/JLT.2019.2919387
7. Yao Y., Zhou C., Zhang et al. A fiber Bragg grating direct current sensor with temperature compensation based on electromagnetic force // Advances in Mechanical Engineering. 2015. V. 7. № 3. P. 1687814015572516. https://doi.org/10.1177/1687814015572516
8. De Nazaré F.V., Werneck M.M., de Oliveira R.P. et al. Development of an optical sensor head for current and temperature measurements in power systems // Journal of Sensors. 2013. V. 2013. Электронный ресурс URL: https://www.hindawi.com/journals/js/2013/393406 (accessed 02/09/2021). https://doi.org/10.1155/2013/393406
9. Polyakov A.V., Ksenofontov M.A. High-voltage monitoring with a fiber-optic recirculation measuring system // Measurement Techniques. 2020. V. 63. № 2. P. 117–124. https://doi.org/10.1007/s11018-020-01759-3
10. Soto M.A., Chin S., Thévenaz L. Double-pulse Brillouin distributed optical fiber sensors: analytical model and experimental validation // OFS2012 22nd International Conference on Optical Fiber Sensors. Beijing, China. October 17, 2012. Proc. SPIE. V. 8421. P. 842124. https://doi.org/10.1117/12.974964
11. Thévenaz L., Soto M.A. Rating the performance of a Brillouin distributed fiber sensor // OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China. November 7, 2012. Proc. SPIE V. 8421. P. 8421A7. https://doi.org/10.1117/12.975290
12. Bao X., Zhou Z., Wang Y. Distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection // PhotoniX. 2021. V. 2. P. 1–29. https://doi. org/10.1186/s43074-021-00038-w
13. Янукович Т.П., Поляков А.В. Моделирование распределенного измерителя силы тока на основе деформации оптического волокна // Приборы и методы измерений. 2019. Т. 10. № 3. С. 243–252. https://doi.org/10.21122/2220-9506-2019-10-3-243-252
 Yanukovich T.P., Polyakov A.V. Simulation of distributed current sensor based on optical fiber deformation // Devices and Methods of Measurements. 2019. V. 10. № 3. P. 243–252. https://doi.org/10.21122/2220-9506-2019-10-3-243-252
14. Янукович Т.П., Поляков А.В. Компьютерное моделирование взаимодействия при вынужденном рассеянии Мендельштама–Бриллюэна в оптическом волокне // Тез. докл. II Международной научнопрактической конференции “Компьютерные технологии и анализ данных (CTDA’2020)”. Минск, Республика Беларусь 23–24 апреля 2020. С. 116–120.
Yanukovich T.P., Polyakov A.V. Computer simulation of interaction during stimulated Mendelshtam–Brillouin scattering in an optical fiber [in Russian] // II International Scientific and Practical Conference Computer Technologies and Data Analysis (CTDA’2020) (Abstracts of reports). Minsk, Republic of Belarus. April 23–24. 2020. P. 116–120.
15. Янукович Т.П., Исмайилова А.С. Моделирование работы оптоволоконного сенсора температуры и деформации с использованием рассеяния Мандельштама–Бриллюэна // Тез. докл. III Международной научнопрактической конференции Компьютерные технологии и анализ данных (CTDA’2022) Минск, Республика Беларусь. 21–22 апреля 2022. С. 257–260.
Yanukovich T.P., Ismayilava A.S. Modeling the operation of a fiber optic temperature and strain sensor using Mandelstam–Brillouin scattering [in Russian] // III International Scientific and Practical Conference Computer Technologies and Data Analysis (CTDA’2022) (Abstracts of reports). Minsk, Republic of Belarus. April 21–22 2022. P. 257–260.