УДК: 621.378.34
Nonlinear optical properties of fullerene-porphyrin complexes
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Захарова И.Б., Квятковский О.Е., Ермолаева Г.М., Спицына Н.Г., Шилов В.Б. Нелинейные оптические свойства фуллерен-порфириновых комплексов // Оптический журнал. 2010. Т. 77. № 1. С. 3–8.
Zakharova I.B., Kvyatkovskiy O.E., Ermolaeva G.M., Spitsyna N.G., Shilov V.B. Nonlinear optical properties of fullerene-porphyrin complexes [in Russian] // Opticheskii Zhurnal. 2010. V. 77. № 1. P. 3–8.
I. B. Zakharova, O. E. Kvyatkovskiĭ, G. M. Ermolaeva, N. G. Spitsyna, and V. B. Shilov, "Nonlinear optical properties of fullerene-porphyrin complexes," Journal of Optical Technology. 77(1), 1-5 (2010). https://doi.org/10.1364/JOT.77.000001
The nonlinear optical properties, optical limitation, and second- and third-order nonlinearity in a new class of noncovalently bonded fullerene-porphyrin complexes are investigated. Quantum-chemical calculations of the optimal geometry, binding energy, electronic structure, and nonlinear optical properties of donor-acceptor fullerene-prophyrin complexes are performed. As a result of the formation of a complex, the second-order molecular polarizability is higher than in porphyrins by two to three orders of magnitude, depending on the orientation of the molecule, and the third-order molecular susceptibility two orders of magnitude higher. The nonlinear absorption in thin films and solutions of the complexes is measured. In picosecond regimes, absorption saturation at 560nm wavelength is observed for pulse energy density above 0.01J/cm2. A model is proposed for the increase of the optical nonlinearity in complexes as compared with the molecular components.
fullerene, metalloporphyrins, nonlinear optical properties, donor-acceptor complexes, optical limitation
Acknowledgements:The research was supported by RFBR (grant No. 09-02-01008).
OCIS codes: 190.4710, 300.0300
References:1. Geng L., Wright J.C. Measurement of the resonant third-order nonlinear susceptibility of C60 by nondegenerate four-wave mixing // Chem. Phys. Lett. 1996. V. 249. № 1–2. P. 105–111.
2. Tang N., Partanen J.P., Hellwarth R.W., Knize R.J. Third-order optical nonlinearity of C60, C70, and CS2 in benzene at 1.06 μm // Phys. Rev. B. 1993. V. 48. № 11. P. 8404–8408.
3. Senge M.O., Fazekas M., Notaras E.G.A., Blau W.J., Zawadzka M., Locos O.B., Mhuircheartaigh E.M.Ni. Nonlinear Optical Properties of Porphyrins // Adv. Mater. 2007. V. 19. № 19. P. 2737–2774.
4. Xenogiannopoulou E., Medved M., Iliopoulos K., Couris S., Papadopoulos M.G., Bonifazi D., Sooambar C., Mateo-Alonso A., Prato M. Nonlinear optical properties of ferrocene- and porphyrin-[60] fullerene dyads // Chemphyschem. 2007. V. 7. № 8. P. 1056–1064.
5. Signorini R., Bozio R., Prato M. Fullerenes: From Synthesis to Optoelectronic Properties. Dordrecht: Kluwer, 2002. 440 p.
6. Kiran P.P., Reddy D.R., Maiya B.G., Dharmadhikari A.K., Kumar G.R., Desai N.R. Enhanced optical limiting and nonlinear absorption properties of azoarene-appended phosphorus (V) tetratolylporphyrins // Appl. Opt. 2002. V. 41. № 6. P. 7631–7636.
7. Rath H., Sankar J., PrabhuRaja V., Chandrashekar T.K., Nag A., Goswami D. Core-Modified Expanded porphyrins with large third-order nonlinear optical response // J. Am. Chem. Soc. 2005. V. 127. № 3. P. 11608–11609.
8. Liu Z.-B., Tian J.-G., Zheng J.-Yu., Li Z.-Yu., Chen S.-Q., Zhu Y. Active tuning of nonlinear absorption in a supramolecular zinc diphenylporphyrin-pyridine system // Opt. Express. 2006. V. 14. № 7. P. 2770–2775.
9. Sendhil K., Vijayan C., Kothiyal M.P. Nonlinear optical properties of a porphyrin derivative incorporated in Nafion polymer // Opt. Мater. 2005. V. 27. № 10. P. 1606–1609.
10. Collini E., Ferrante C., Bozzio R., Lodib A., Ponterinib G. Large third-order nonlinear optical response of porphyrin J-aggregates oriented in self-assembled thin films // J. Mater. Chem. 2006. V. 16. № 16. P. 1573–1578.
11. Brusatin G., Signorini R. Linear and nonlinear optical properties of fullerenes in solid state materials // J. Mater. Chem. 2002. V. 12. № 7. P. 1964–1977.
12. Granovsky A.A. http://classic.chem.msu.su/gran/gamess/ index.html.
13. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.J., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system // J. Comput. Chem. 1993. V. 14. № 11. P. 1347–1363.
14. Zakharova I.B., Makarova T.L., Serenkov I.T., Virki D.A. Preparation and optical characterization of C60Brx thin films // Mol. Мat. 2000. V. 13. P. 335–338.
15. Zakharova I.B., Makarenko I.V., Makarova T.L., Nashchekin A.V., Petrov V.N., Razbirin B.S., Starukhin A.N., Belyakov L.V. Initial stage of condensation of C60 films on semiconducting substrates of different chemical nature // Fullerenes, nanotubes, and carbon nanostructures. 2004. V. 12. № 1–2. P. 537–543.
16. Zakharova I.B., Donenko E.A., Birylin Yu.F., Sharonova L.V., Makarova T.L. Optical and vibrational properties of thin film Fullerene-Zinc(II) tetraphenylporphyrin complexes // Fullerenes, Nanotubes and Carbon Nanostructures. 2008. V. 16. № 5–6. P. 424–429.