УДК: 541.64
Optical modelling of an Alq3-based organic light-emitting diode
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Nichelatti E., Bonfigli F., Vincenti M.A., Montereali R.M. Optical modelling of an Alq3-based organic light-emitting diode [на англ. яз.] // Оптический журнал. 2011. Т. 78. № 7. С. 10–16.
Nichelatti E., Bonfigli F., Vincenti M.A., Montereali R.M. Optical modelling of an Alq3-based organic light-emitting diode [in English] // Opticheskii Zhurnal. 2011. V. 78. № 7. P. 10–16.
E. Nichelatti, F. Bonfigli, M. A. Vincenti, and R. M. Montereali, "Optical modelling of an Alq3-based organic light-emitting diode," Journal of Optical Technology. 78(7), 424-429 (2011). https://doi.org/10.1364/JOT.78.000424
A theoretical model that features analytical formulas is developed for the evaluation of the light intensity that is radiated from a layered structure containing optically-active layers. The model is applied to an Alq3-based organic light-emitting diode to study the convenience of using a LiF/Al cathode and find optimal thicknesses of some of the device layers.
organic light-emitting diode, Alq3, lithium fluoride, thin film
Acknowledgements:Research carried out within TECVIM project: Tecnologie per Sistemi di Visualizzazione di Immagini (Technologies for Image Visualization Systems) funded by the Italian Ministry of University and Scientific Research MIUR as support to applied research.
OCIS codes: 160.2540, 160.4890, 230.3670, 230.4170, 310.6805
References:1. Tang C.W., VanSlyke S.A. Organic electroluminescent diodes // Appl. Phys. Lett. 1987. V. 51. P. 913–915.
2. Milonni P.W., Knight P.L. Spontaneous emission between mirrors // Opt. Commun. 1973. V. 9. P. 119–122.
3. De Martini F., Marrocco M., Mataloni P., Crescentini L., Loudon R. Spontaneous emission in the optical microscopic cavity // Phys. Rev. A. 1991. V. 43. P. 2480–2497.
4. Björk G., Machida S., Yamamoto Y., Igeta K. Modification of spontaneous emission rate in planar dielectric microcavity structures // Phys. Rev. A. 1991. V. 44. P. 669–681.
5. De Martini F., Cairo F., Mataloni P., Verzegnassi F. Thresholdless microlaser // Phys. Rev. A. 1992. V. 46. P. 4220–4233.
6. Dutra S.M. Cavity Quantum Electrodynamics – The Strange Theory of Light in a Box. Hoboken: Wiley & Sons, 2005.
7. Meystre P., Sargent M.I. Elements of Quantum Optics. 4th ed. Berlin: Springer, 2007.
8. Kuhn H. Classical aspects of energy transfer in molecular systems // J. Chem. Phys. 1970. V. 53. P. 101–108.
9. Tews K.H. On the variation of luminescence lifetimes. The approximations of the approximative methods // Journ. Lumin. 1974. V. 9. P. 223–239.
10. Dowling J.P., Scully M.O., De Martini F. Radiation pattern of a classical dipole in a cavity // Opt. Commun. 1991. V. 82. P. 415–419.
11. Rigneault H., Monneret S. Modal analysis of spontaneous emission in a planar microcavity // Phys. Rev. A. 1996. V. 54. P. 2356–2368.
12. Ciancaleoni S., Mataloni P., Jedrkiewicz O., De Martini F. Angular distribution of the spontaneous emission in a planar dielectric dye microcavity // Journ. Opt. Soc. Am. B. 1997. V. 14. P. 1556–1563.
13. Benisty H., Stanley R., Mayer M. Method of source terms for dipole emission modification in modes of arbitrary planar structures // Journ. Opt. Soc. Am. A. 1998. V. 15. P. 1192–1201.
14. Benisty H., De Neve H., Weisbuch C. Impact of planar microcavity effects on light extraction – Part I: Basic concepts and analytical trends // IEEE Journ. Quantum Electron. 1998. V. 34. P. 1612–1631.
15. Danz N., Waldhausl R., Brauer A., Kowarschik R. Dipole lifetime in stratified media // Journ. Opt. Soc. Am. B. 2002. V. 19. P. 412–419.
16. Nichelatti E. Cooperative Spontaneous Emission from Volume Sources in Layered Media // ENEA Technical Report 2009. RT/2009/4/FIM. ISSN/0393-3016.
17. Nichelatti E., Marrocco M., Montereali R.M. Cooperative optical effects in volumes embedded in layered media // Journ. Raman Spectr. 2010. V. 41. P. 859–865.
18. Svelto O. Principles of Lasers. 4th ed. N. Y.: Springer, 1998.
19. Brown T.M., Friend R.H., Millard I.S., Lacey D.J., Burroughes J.H., Cacialli F. LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes // Appl. Phys. Lett. 2000. V. 77. P. 3096–3098.
20. Montereali R.M., Gambino S., Loreti S., Gagliardi S., Pace A., Baldacchini G., Michelotti F. Morphological, electrical and optical properties of organic light-emitting diodes with a LiF/Al cathode and an Al-hydroxyquinoline/diamine junction // Synth. Metals. 2004. V. 143. P. 171–174.
21. Palik E.D. Handbook of Optical Constants of Solids. London: Academic Press, 1985.
22. Garbuzov D.Z., Forrest S.R., Tsekoun A.G., Burrows P.E., Bulovíc V., Thompson M.E. Organic films deposited on Si p-n junctions: Accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings // Journ. Appl. Phys. 1996. V. 80. P. 4644–4648.
23. SPI® Supplies, Online Catalog, webpage address: http://www.2spi.com/catalog/standards/ITO-coated-substrates-refractive-index-values.html.
24. Palik E.D. Handbook of Optical Constants of Solids II. London: Academic Press, 1991.
25. Yamashita K., Futenma J., Mori T., Mizutani T. Effect of location and width of doping region on efficiency in doped organic light-emitting diodes // Synth. Metals. 2000. V. 111–112. P. 87–90.
26. Baldacchini G., Gagliardi S., Montereali R.M., Pace A., Pode R.B. Optical Spectroscopy of Tris(8-Hydroxyquinoline)Aluminium Thin Films // Phyl. Mag. B. 2002. V. 82. P. 669–680.
27. Hung L.S., Chen C.H. Recent progress of molecular organic electroluminescent materials and devices // Mat. Sci. Eng. R. 2002. V. 39. P. 143–222.