ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 004.932, 519.722

Modern video informatics: problems and prospects

For Russian citation (Opticheskii Zhurnal):

Васильев В.Н., Гуров И.П., Потапов А.С. Современная видеоинформатика: проблемы и перспективы // Оптический журнал. 2012. Т. 79. № 11. С. 5–15.

Vasil’ev V. N., Gurov I. P., Potapov A. S. Modern video informatics: problems and prospects  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 11. P. 5–15.

For citation (Journal of Optical Technology):

V. N. Vasil’ev, I. P. Gurov, and A. S. Potapov, "Modern video informatics: problems and prospects,"Journal of Optical Technology. 79(11), 681-688 (2012).  https://doi.org/10.1364/JOT.79.000681

Abstract:

This paper discusses modern problems of video informatics in the area of the formation, transmission, processing, analysis, and visualization of video information. The distinguishing feature of video informatics is that it treats these problems from a unified theoretical viewpoint, and this allows the characteristics of video-information systems to be developed and optimized as a unified whole. It is shown to be effective to use a theoretical–informational approach to analyze and optimize video-information systems, starting from the optical channel of radiation propagation in free space when images or multi-dimensional video data are being formed and concluding with the visualization system. Promising directions of further development of the methods of video informatics are highlighted.

Keywords:

video informatics, information theory, imaging, image representation, visualization

OCIS codes: 100.2000, 110.2990, 110.3055

References:

1. V. N. Vasil’ev, I. P. Gurov, and A. S. Potapov, “Mathematical methods and algorithmic assurance of the analysis and recognition of images in information–telecommunication systems,” Federal portal on scientific and innovation activity. Access regime http://www.sci-innov.ru/articles/itcs/contest its/?entry id=62325.
2. C. Wagner and G. H¨ausler, “Information theoretical optimization for optical image sensors,” Appl. Opt. 42, 5418 (2003).
3. D. D. Klovski˘ı, ed., Theory of Electrical Communication (Radio i Svyaz’, Moscow, 1999).
4. L. I. Khromov, A. K. Tsitsulin, and A. N. Kulikov, Video Informatics. Transmission and Computer Processing of Video Information (Radio i Svyaz’, Moscow, 1991).
5. B. Horn and M. Brooks, eds., Shape from Shading (MIT Press, Cambridge, Mass., 1989).
6. C. Shannon, Collected Papers (IEEE Press, New York, 1993; Inostr. Lit., Moscow, 1963).
7. A. N. Kolmogorov, Information Theory and the Theory of Algorithms (Nauka, Moscow, 1987).
8. D. Goodman, Statistical Optics (Wiley, New York, 1985; Mir, Moscow, 1988).
9. R. Solomonoff, Does Algorithmic Probability Solve the Problem of Induction? (Oxbridge Research, Cambridge, Mass., 1997).
10. P. M. B. Vitanyi and M. Li, “Minimum description length induction, Bayesianism, and Kolmogorov complexity,” IEEE Trans. Inf. Theory 46, 446 (2000).

11. A. S. Potapov, “Choosing representations of images based on minimization of the representation length of their description,” Izv. Vyssh. Uchebn. Zaved. Prib. 51, No. 7, 3 (2008).
12. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman, San Francisco, 1982; Radio i Svyaz’, Moscow, 1987).
13. M. V. Peterson and A. S. Potapov, “Using the principle of minimal representation length of a description for sensorimotor calibration,” Izv. Kabardino-Balkarskogo Nauchnogo Tsentra, RAN 221 (2011).
14. V. V. Okunev and A. S. Potapov, “Analysis of the fractal representation of images using the criterion of the minimal representation length of a description,” in Transactions of the Scientific Research Center of Photonics and Optoinformatics: A Collection of Articles, I. P. Gurov and S. A. Kozlova, eds. (SPbGU ITMO, St. Petersburg, 2010), Vol. 2, p. 315.
15. F. Naterrer, The Mathematics of Computerized Tomography (J. Wiley and Sons, 1986; Mir, Moscow, 1990).
16. S. Webb, D. R. Dance, and S. Evans, “The physics of image visualization in medicine,” in The Physics of Medical Imaging, S. Webb, ed. (Adam Hilger, CRC Press, Bristol and Philadelphia, 1988; Mir, Moscow, 1991).
17. V. B. Kashkin and A. I. Sukhinin, Remote Probing of the Earth from Space. Digital Image Processing (Logos, Moscow, 2001).
18. M. A. Popov and S. A. Stankevich, Methods of Optimizing the Number of Spectral Channels in Problems of the Processing and Analysis of the Data of Remote Probing of the Earth, Vol. 1 (IKI RAN, Moscow, 2006), pp. 106–112.
19. R. N. Karimov and A. A. Bol’shakov, Methods of Processing Multi-Dimensional Data and Time Series (Goryachaya Liniya-Telekom, Moscow, 2007).
20. M. Chobanu, Multi-Dimensional Multi-Speed Signal-Processing Systems (Tekhnosfera, Moscow, 2009).
21. J. L. Lowrance, V. J. Mastrocola, G. F. Renda, P. K. Swain, R. Kabra, M. Bhaskaran, J. R. Tower, and P. A. Levine, “Ultrahigh-frame CCD imagers,” Proc. SPIE 5210, 521067 (2004).
22. Y. Bai, J. Bajaj, J. W. Beletic, M. C. Farris, A. Joshi, S. Lauxtermann, A. Petersen, and G. Williams, “Teledyne imaging sensors: silicon CMOS imaging technologies for X-ray, UV, visible and near infrared,” Proc. SPIE 7021, 702102 (2008).
23. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, No. 34, H87 (2011).
24. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99 (2004).
25. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 46, 446 (1908).
26. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598 (1997).
27. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 333–378, Chap. 12.
28. U. Schnars and W. Jueptner, Digital Holography. Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer- Verlag, Berlin-Heidelberg, 2005).
29. S. A. Balti˘ıski˘ı, I. P. Gurov, S. De Nikola, D. Koppola, and P. Ferraro, “Modern methods of digital holography,” in Problems of Coherent and Digital Optics, I. P. Gurov and S. A. Kozlov, eds. (SPb GU ITMO, St. Petersburg, 2004), pp. 91–117.
30. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636 (2006).
31. V. M. Bove, “Display holography’s digital second act,” Proc. IEEE 100, 918 (2012).
32. M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, “100-megapixel computer-generated holographic images from active tiling—a dynamic and scalable electro-optic modulator system,” Proc. SPIE 5005, 247 (2003).

33. Y. Takaki and M. Yokouchi, “Speckle-free and gray-scale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567 (2011).
34O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199 (2006).
35. W. Wu, F. Blaicher, J. Yang, T. Seder, and D. Cui, “A prototype of landmark-based car navigation using a full-windshield head-up display system,” in Proceedings of Workshop on Ambient Media Computing, ACM, 2009, pp. 21–28.
36. P. C. Barnum, S. G. Narasimhan, and T. Kanade, “A multilayered display with water drops,” ACM Trans. Graph. 29, 76 (2010).
37. Advanced Institute of Science and Technology, access regime http://www.aist.go.jp/aist e/latest re-search/2006/20060210/20060210.html.
38. S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikao, “Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths,” Vision Res. 44, 785 (2004).
39. A. Redert, M. O. de Beeck, C. Fehn, W. Ijsselsteijn, M. Pollefeys, L. Van Gool, E. Ofek, I. Sexton, and P. Surman, “Advanced three-dimensional television systems technologies,” in Proceedings of First International Symposium on 3D Data Processing, Visualization and Transmission, 2002, pp. 313–319.
40. R. Otsuka, T. Hoshino, and Y. Horry, “Transpost: 360-viewable threedimensional display system,” Proc. IEEE 94, 629 (2006).
41. K. Matsushima, Y. Arima, and S. Nakahara, “Digitized holography: modern holography for 3D imaging of virtual and real objects,” Appl. Opt. 50, H278 (2011).
42. J.-Y. Son, B. Javidi, and K.-D. Kwack, “Methods for displaying three-dimensional images,” Proc. IEEE 94, 502 (2006).
43. IO2 Technology, access regime http://www.io2technology.com/media/heliodisplay-brochure.pdf.
44. M. Subbarao and T. S. Choi, “Accurate recovery of three-dimensional shape from image focus,” IEEE Trans. Pattern Anal. Mach. Intell. 17, 266 (1995).
45. R. Minhas, A. A. Mohammed, and Q. M. J. Wu, “Shape from focus using fast discrete curvelet transform,” Patt. Recogn. 44, 839 (2011).
46. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133 (2010).
47. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe-projection techniques,” Opt. Lasers Eng. 48, 149 (2010).
48. J. M. Huntley, T. Ogundana, R. L. Burguete, and C. R. Coggrave, “Large-scale full-field metrology using projected fringes: some challenges and solutions,” Proc. SPIE 6616, 66162 (2007).
49. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, an Introduction (Springer-Verlag, Berlin, 1999).
50. J. Gruninger, R. L. Sundberg, M. J. Fox, R. Levine, W. F. Mundkowsky, M. S. Salisbury, and A. H. Ratcliff, “Automated optimal channel selection for spectral imaging sensors,” Proc. SPIE 4381, 43811 (2001).
51. A. V. Fantin, A. Albertazzia, and T. L. Pintoa, “An efficient mesh-oriented algorithm for 3D measurement in multiple-camera fringe projection,” Proc. SPIE 6616, 66161 (2007).
52. M. Mackay, R. G. Fenton, and B. Benhabib, “Time-varying-geometry object surveillance using a multi-camera active-vision system,” Int. J. Smart Sens. Intell. Syst. 1, 679 (2008).