ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 538.958

Selective absorption in thermally oxidized nanoporous silicon

For Russian citation (Opticheskii Zhurnal):

Михайлов А.В., Григорьев Л.В., Коноров П.П. Селективное поглощение в термически окисленном нанопористом кремнии // Оптический журнал. 2012. Т. 79. № 2. С. 54–58.

 

Mikhaĭlov A. V., Grigor’ev L. V., Konorov P. P. Selective absorption in thermally oxidized nanoporous silicon // Opticheskii Zhurnal. 2012. V. 79. № 2. P. 54–58.

For citation (Journal of Optical Technology):

A. V. Mikhaĭlov, L. V. Grigor’ev, and P. P. Konorov, "Selective absorption in thermally oxidized nanoporous silicon," Journal of Optical Technology. 79(2), 99-101 (2012). https://doi.org/10.1364/JOT.79.000099

Abstract:

This paper presents a study of the optical properties of thermally oxidized nanoporous silicon in the wavenumber range 5000–400 cm−1. It is shown for the first time that thermally oxidized nanoporous silicon has two broad regions of reduced transmittance in the wavenumber range from 3720 to 3000 cm−1 and five narrow zones that have their minima at the following wave numbers: 2920, 2240, 1680, 840, and 600 cm−1. The transmittance spectra of the thermally oxidized SiO2–Si structure are measured in the wavenumber range 5000–400 cm−1. It is established that the thermally oxidized SiO2–Si structure is transparent in the wavenumber range 5000–1200 cm−1 and has narrow absorption peaks insignificant in magnitude at 1090 cm−1 and 620 cm−1. It is shown that thermally oxidized nanoporous silicon can be used as a selectively absorbing and recording medium in the IR range.

Keywords:

thermally oxidized nanoporous silicon, selective absorption, optoelectronic receiver сomponent

OCIS codes: 160.4330, 160.5470, 230.0250

References:

1. V. E. Borisenko, S. K. Lazarouk, and J. A. Berashevich, “Electroluminescence in porous silicon at a reverse bias voltage applied to the Schottky barrier,” Fiz. Tekh. Poluprovodn. 40, 240 (2006). [Semiconductors 40, 234 (2006)].
2. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, “Optical properties of porous-system-based nanocomposites,” Usp. Fiz. Nauk 177, 619 (2007). [Phys.–Usp. 50, 595 (2007)].
3. A. G. Gullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909 (1997).
4. L. V. Grigor’ev, I. M. Grigor’ev, M. V. Zamoryanskaya, V. I. Sokolov, and L. M. Sorokin, “Transport properties of thermally oxidized porous silicon,” Pis’ma Zh. Tekh. Fiz. 32, No. 17, 33 (2006). [Tech. Phys. Lett. 32, 750 (2006)].
5. O. Bisi, S. Ossieni, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1 (2000).
6. W. Kern, “Infrared spectroscopic method for compositional determination of vapor-deposited borosilicate glass films and results of the application,” RCA Rev. 32, 429 (1971).
7. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Ann. Phys. (Leipzig) 416, 636 (1935).
8. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, “Optical properties of Si nanocrystals,” Phys. Status Solidi B 215, 871 (1999).
9. M. I. Strashnikova, V. I. Vvozny˘ı, V. Ya. Reznichenko, and V. Ya. Ga˘ıvoronski˘ı, “Optical properties of porous silicon,” Zh. Eksp. Teor. Fiz. 120, 409 (2001). [JETP 93, 363 (2001)].