ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 771.36

Increasing the viewing angles in displays based on liquid crystals. Review

For Russian citation (Opticheskii Zhurnal):

Пестов С.М., Томилин М.Г. Увеличение углов обзора в дисплеях на основе жидких кристаллов. Обзор // Оптический журнал. 2012. Т. 79. № 9. С. 66–80.

    

Pestov S. M., Tomilin M. G. Increasing the viewing angles in displays based on liquid crystals. Review [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 66–80.

For citation (Journal of Optical Technology):
S. M. Pestov and M. G. Tomilin, "Increasing the viewing angles in displays based on liquid crystals. ReviewThis review uses some materials of an invited report delivered at the International Conference in Calcutta on “Trends in Optics and Photonics,” 12/7–9/2011." Journal of Optical Technology. 79(9), 576-587 (2012). https://doi.org/10.1364/JOT.79.000576
Abstract:

This paper discusses modern principles of constructing displays based on liquid crystals, which provide high-contrast images at large viewing angles. The characteristics of displays based on the twist and supertwist effects and the transverse electric-field effect are considered, along with optical compensator films and multidomain vertically oriented structures. Displays with controllable field-of-view angles are described.

Keywords:

viewing angle, contrast ratio, superfluous, compensating films, effect with transverse application of an electric field, vertically oriented structure

OCIS codes: 230.3720

References:

1. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, New York, 1999).
2. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, Chichester, 2002).
3. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Chichester, 2006).
4. M. G. Tomilin and G. E. Nevskaya, The Photonics of Liquid Crystals (Izd. Politekhn. Univ., St. Petersburg, 2011).
5. K.-H. Kim and J.-K. Song, “Technical evolution of liquid-crystal displays,” NPG Asia Mater. 1, No. 1, 29 (2009).
6. A. Lien, H. Takano, S. Suzuki, and H. Uchida, “The symmetry property of a 90◦ twisted-nematic liquid-crystal cell,” Mol. Cryst. Liq. Cryst. 198, 37 (1991).

7. M. Koden, “Wide viewing-angle technologies of TFT LCDs,” Sharp Tech. J. 1, No. 2, 1 (1999).
8. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S.-T. Wu, “Extraordinarily high-contrast and wide-view liquid-crystal displays,” Appl. Phys. Lett. 86, 121107 (2005).
9. G. Haas, “Angular dependence of liquid-crystal display,” in Eurodisplay (Berlin, 1999), pp. 5–24.
10. T. J. Scheffer and J. Nehring, “A new, highly multiplexable liquid-crystal display,” Appl. Phys. Lett. 45, 1021 (1984).
11. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, “Optically compensated in-plane-switching mode TFT-LCD panel,” SID Symp. Digest 29, 706 (1998).
12. Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN LCDs,” SID Symp. Digest 22, 739  (1991).
13. S. T. Wu, “Film-compensated homeotropic liquid-crystal cell for direct view display,” J. Appl. Phys. 76, 5975 (1994).
14. S. Z. D. Cheng, F. Li, E. P. Savitski, and F. W. Harris, “Molecular design of aromatic polyimide films as uniaxial negative birefringent optical compensators in liquid-crystal displays,” Trends Polym. Sci. 5, 51 (1997).
15. J. P. Eblen, W. I. Gunning, J. Beedy, D. Taber, L. Hale, P. Yeh, and D. Khoshnevisan, “Birefringent compensators for normally white TN LCDs,” SID Symp. Digest 25, 245 (1994).
16. L.-H. Wu, S.-J. Luo, C.-S. Hsu, and S.-T. Wu, “Obliquely tilted discotic phase-compensation films,” Jpn. J. Appl. Phys. 39, L869 (2000).
17. H. Hasebe, K. Takeuchi, and H. Takatsu, “Properties of novel UV-curable LCs and their retardation films,” J. Soc. Inf. Disp. 3, 139 (1995).
18. S.-T. Wu, “Design and fabrication of phase-matched compensation films for LCDs,” SID Appl. Digest 27, 21 (1996).
19. H. Mori, Y. Itoh, Y. Nishlura, T. Nakamura, and Y. Shinagawa, “Novel optical compensation film for AMLCDs,” SID Symp. Digest 27, 941 (1997).
20. H. L. Ong, “Improvement of LCD viewing angles by negative birefringence compensation films,” Mol. Cryst. Liq. Cryst. 320, 59 (1998).
21. G. G. Nair, D. S. S. Rao, S. K. Prasad, S. Chandrasekhar, and S. Kumar, “Electrooptic and viewing angle characteristics of a display device employing a discotic nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 397, 245 (2003).
22. K. Inoue, T. Kurita, E. Yoda, T. Kaminade, T. Toyooka, and Y. Kobori, “Novel viewing angle compensation films for TN LCDs using a hybrid aligned rod-like LC polymer,” in The Fifth International Display Workshop, 1998, p. 255.
23. T. Toyooka, E. Yoda, T. Yamanashi, and Y. Kobori, “Viewing-angle performance of TN LCD with hybrid aligned nematic film,” Displays 20, No. 5, 221 (1999).
24. T. Miyashita, Y. Miyazawa, H. Kikuchi, H. Aoki, and A. Mawatari, “A multicolor wide-viewing angle STN LCD with multiple retarding films,” SID Symp. Digest 22, 743 (1991).
25. S. Kondo, T. Yamamoto, A. Murayama, H. Hatch, and S. Matsumoto, “A fast-response black and white STN-LCD with retarding film,” SID Symp. Digest 22, 747 (1991).
26. K. Vermeirsch, A. De Meyere, J. Fornier, and H. De Vleeschouwer, “Viewing angle of liquid-crystal displays: representation on the Poincar´e sphere,” Appl. Opt. 38, 2775 (1999).
27. R. A. Soref, “Transverse field effects in nematic liquid crystals,” Appl. Phys. Lett. 22, 165 (1973).
28. R. Kiefer, B. Weber, F. Windscheid, and G. Baur, “In-plane switching of nematic liquid crystals,” in Proceedings Japan Displays ’92, 1992, pp. 547–550.
29. Y. Sun, H. Ma, and Z. Zhang, “A super twisted nematic liquid-crystal device based upon in-plane switching,” Proc. SPIE 5632, 267 (2005).
30. Y. Sun, H. Ma, and Z. Zhang, “In-plane switching π-twist liquid-crystal displays,” Proc. SPIE 6030, 60300 (2006).
31. M. Oh-e, M. Yoneya, and K. Kondo, “Switching of negative and positive dielectro-anisotropic liquid crystals by in-plane electric fields,” J. Appl. Phys. 82, 528 (1997)

32. S. H. Lee, H. Y. Kim, I. C. Park, B. G. Rho, J. S. Park, H. S. Park, and C. H. Lee, “Rubbing free, vertically aligned nematic liquid-crystal display controlled by in-plane field,” Appl. Phys. Lett. 71, 2851 (1997).
33. K.-H. Kim, S.-B. Park, J.-U. Shim, J.-H. Souk, and J. Chen, “New LCD modes for wide-viewing-angle applications,” SID Symp. Digest 29, 1085 (1998).
34. J.-J. Lyu, J. Sohn, H. Y. Kim, and S. H. Lee, “Recent trends on patterned vertical alignment (PVA) and fringe-field switching (FFS) liquid-crystal displays for liquid-crystal television applications,” J. Disp. Technol. 3, 404 (2007).
35. G. Yang and Y. Sun, “A high-transmittance vertical alignment liquid-crystal display using a fringe and in-plane electrical field,” Liq. Cryst. 38, 469 (2011).
36. Y. J. Lim, E. Jeong, Y. S. Kim, Y. H. Jeong, W.-G. Jang, and S. H. Lee, “Viewing-angle switching in fringe-field switching liquid-crystal display,” Mol. Cryst. Liq. Cryst. 495, 186 (2008).
37. S. Aratani, H. Klausmann, M. Oh-e, M. Ohta, K. Ashizawa, K. Yanagawa, and K. Kondo, “Complete suppression of color shift in in-plane switching mode liquid-crystal display with a multidomain structure obtained by unidirectional rubbing,” Jpn. J. Appl. Phys. 36, L27 (1997).
38. H. Klausmann, S. Aratani, and K. Kondo, “Optical characterization of the in-plane switching effect utilizing multidomain structures,” J. Appl. Phys. 83, 1854 (1998).
39. Y. Nakayoshi, N. Kurahashi, J. Tanno, E. Nishimura, K. Ogawa, and M. Suzuki, “High-transmittance pixel design of in-plane switching TFT  LCDs for TVs,” SID Symp. Digest 34, 1100 (2003).
40. S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid-crystal cell controlled by fringe-field switching,” Appl. Phys. Lett. 73, 2881 (1998).
41. J. Chen, K.-H. Kim, J.-J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, “Optimum film compensation modes for TN and VA LCDs,” SID Symp. Digest 29, 315 (1998).
42. T. Sigiyama, Y. Toko, T. Hashimoto, K. Katoh, Y. Iimura, and S. Kobayashi, “Analytical simulation of electro-optical performance of amorphous and super-multidomain TN LCD,” SID Symp. Digest 25, 919 (1994).
43. M. Hird, J. W. Goodby, and K. J. Toyne, “Nematic materials with negative dielectric anisotropy for display applications,” Proc. SPIE 3955, 15 (2000).
44. D. Pauluth and K. Tarumi, “Optimization of liquid crystals for television,” J. Soc. Inf. Disp. 13, 693 (2005).
45. P. Kirsch and M. Bremer, “Nematische Fl¨ussigkristalle f¨ur Aktiv-Matrix- Displays: design und synthese,” Angew. Chem. 112, 4384 (2000).
46. J. W. Goodby, “The nanoscale engineering of nematic liquid crystals for displays,” Liq. Cryst. 38, 1363 (2011).
47. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, “A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology,” SID Symp. Digest 29, 1077 (1998).
48. S. B. Park, J. Lyu, Y. Um, H. Do, S. Ahn, K. Choi, K.-H. Kim, and S. S. Kim, “A novel charge-shared S-PVA technology,” SID Symp. Digest 38, 1252 (2007).
49. Y.-P. Huang, W.-K. Huang, C.-H. Tsao, J.-J. Su, H.-L. Hou, C.-Y. Lee, L. Liao, T.-R. Chang, Y.-C. Lin, and P.-L. Chen, “Additional refresh technology (ART) of advanced-MVA (AMVA) mode for high quality LCDs,” SID Symp. Digest 38, 1010 (2007).
50. S. E. Hicks, S. P. Hurley, R. S. Zola, and D.-K. Yang, “Polymer-stabilized VA mode liquid-crystal display,” J. Disp. Technol. 7, 619 (2011).
51. H. Hong, “Analysis of the generation of multi-domain in vertical alignment (VA) mode caused by the fringe field on the side of the lower substrate,” Liq. Cryst. 38, 1007 (2011).
52. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Application of Liquid Crystal Devices (Taylor & Francis, New York, 2005).
53. R. Van L. Ewyk, I. O’Connor, A. Mosley, A. Cuddy, C. Hilsum, C. Blackburn, J. Griffiths, and F. Jones, “Anisotropic fluorophors for LCDs,” Disp. Technol. Appl. 7, No. 4, 155 (1986).
54. N. Yamada, S. Kozaki, F. Funada, and K. Awane, “Axially symmetric aligned microcell mode,” SID Symp. Digest 26, 575 (1995).

55. A. S. Sukhar’er, Liquid-Crystal Indicators (Radio i Svyaz’, Moscow, 1991), pp. 173–174.
56. M. G. Tomilin, “Advanced display technologies,” Opt. Zh. 70, No. 7, 4 (2003). [J. Opt. Technol. 70, 454 (2003)].
57. Y. Hisatake, Y. Kawata, and A. Murayama, “Viewing-angle controllable LCD using variable optical compensator and variable diffuser,” SID Symp. Digest 36, 1218 (2005).
58. J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, “Viewing-angle control mode using nematic bistability,” Opt. Express 16, 2663 (2008).
59. C. P. Chen, C. G. Jhun, T.-H. Yoon, and J. C. Kim, “Optimal design of omnidirectional viewing angle-switching panel,” Opt. Express 15, 17937 (2007).
60. Y. J. Lim, E. Jeong, Y. S. Kim, J. M. Rhee, G.-D. Lee, and S. H. Lee, “Viewing-angle switching in vertical alignment liquid-crystal display by optimizing pixel structure and controlling LC orientation,” SID Symp. Digest 38, 756 (2007).
61. A. Samarin, “Technologies of LC displays with a controllable viewing angle,” Kompon. Tekhno. No. 8, 15 (2008).
62. H. Ong, O. Woodard, N. Cheong, and C. Reese, “A new normally black, high-contrast, wide symmetrical-viewing-angle AMLCD for military head-mounted displays (HMDs) and other viewer applications,” Proc. SPIE 5442, 301 (2004).
63. O. Woodard, J. Lo, M. Khandaker, J. Gassel, F. Herrmann, H. Ong, B. Y. Tsaur, and C. Reese, “A full-color SXGA TN AMLCD for military head-mounted displays and viewer applications,” Proc. SPIE 6955, 69550 (2008).