ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 62-408 535 532.5

Magnetorheological polishing of optical surfaces

For Russian citation (Opticheskii Zhurnal):

Кордонский В.И., Городкин С.Р. Магнитореологическое полирование оптических поверхностей // Оптический журнал. 2012. Т. 79. № 9. С. 81–95.

 

Kordonskiĭ V. I., Gorodkin S. R. Magnetorheological polishing of optical surfaces [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 81–95.

For citation (Journal of Optical Technology):

V. I. Kordonskiĭ and S. R. Gorodkin, "Magnetorheological polishing of optical surfaces," Journal of Optical Technology. 79(9), 588-598 (2012). https://doi.org/10.1364/JOT.79.000588

Abstract:

This paper discusses the principle of magnetorheological (MR) polishing, which is widely used in the production of precision optics, and also presents the results of processing optical items of complex shape. The concept of ablation of material from the surface to be processed, based on the principle of conservation of momentum by the particles of a binary abrasive suspension, is considered in the theoretical part as applied to the method of MR polishing. According to the proposed model, the forces normal to the surface required for the incorporation of abrasive particles into the material being polished are provided by their interaction near the surface with the more massive baseline (magnetic) particles, which in the shear flow of the concentrated suspension are subject to fluctuations and exchange momentum with the abrasive particles.

Keywords:

magnetorheological polishing, magnetorheological polishing fluid, material entrainment, simulation, granular flow

OCIS codes: 240.5450; 220.0220

References:

1. I. Marinescu, E. Uhlmann, and T. Doi, Handbook of Lapping and Polishing (CRC Press, 2006).
2. D. D. Walker, A. T. H. Beaucamp, D. Brooks, R. Freeman, A. King, G. McCavana, R. Morton, D. Riley, and J. Simms, “Novel CNC polishing process for control of form and texture on aspheric surfaces,” Proc. SPIE 451, 267 (2001).
3. A. Momber and R. Kovacevic, Principles of Abrasive Water-Jet Machining (Springer, New York, 1998).
4. S. M. Booij, “Fluid jet polishing,” doctoral thesis (Technische Universiteit Delft, 2003).
5. Y. Mori, K. Yamauchi, and K. Endo, “Mechanism of atomic removal in elastic emission machining,” J. Jpn. Soc. Prec. Eng. 10, 24 (1997).
6. W. Kordonsky, I. Prokhorov, S. Gorodkin, G. Gorodkin, L. Gleb, and B. Kashevsky, “Magnetorheological polishing devices and methods,” U.S. Patent 5 449 313 (1993).
7. W. Kordonski, D. Golini, and S. Hogan, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. Patent 5 971 835 (1999).
8. W. Kordonski and S. Jacobs, “Magnetorheological finishing,” Int. J. Mod. Phys. B-10, 2837 (1996).

9. W. Kordonski, A. Shorey, and M. Tricard, “Magnetorheological jetfinishing technology,” J. Fluid Eng. 128, 20 (2006).
10. J. Lambropoulos, C. Miao, and S. Jacobs, “Magnetic-field effects on shear and normal stresses in magnetorheological finishing,” Opt. Express 18, 19713 (2010).
11. A. Shorey, S. Jacobs, W. Kordonski, and R. Gans, “Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing,” Appl. Opt. 40, 20 (2001).
12. J. DeGroote, A. Marino, J. Wilson, A. Bishop, J. Lambropoulos, and S. Jacobs, “Removal-rate model for magnetorheological finishing (MRF) of glass,” Appl. Opt. 46, 7927 (2007).
13. C. Miao, S. Shafrir, J. Lambropoulos, and S. Jacobs, “Normal force in magnetorheological finishing,” Proc. SPIE 7426, 74260C (2009).
14. C. Miao, S. Shafrir, J. Lambropoulos, J. Mici, and S. Jacobs, “Shear stress in magnetorheological finishing for glasses,” Appl. Opt. 48, 2585 (2009).
15. Y. Dai, C. Song, X. Peng, and F. Shi, “Calibration and prediction of removal function in magnetorheological finishing,” Appl. Opt. 49, 298 (2010).
16. W. Kordonski and S. Gorodkin, “Material removal in magnetorheological finishing of optics,” Appl. Opt. 50, 1984 (2011).
17. W. Kordonski, “Elements and devices based on magnetorheological effect,” J. Intell. Mater. Syst. Struct. 4, 65 (1993).
18. J. Menapace, S. Dixit, F. Genin, and W. Brocious, “Magnetorheological finishing for imprinting continuous phase plate structure onto optical
surfaces,” Proc. SPIE 5273, 220 (2003).
19. F. W. Preston, “The theory and design of plate-glass polishing machines,” J. Soc. Glass Technol. 11, 214 (1927).
20. W. Kordonski and S. Gorodkin, “Magnetorheological measurements with consideration for the internal magnetic field in samples,” J. Phys.: Conf. Ser. 149, 012064 (2009).
21. G. Basim, I. Vakarelski, and M. B. Moudgil, “Role of interaction forces in controlling the stability and polishing performance of CMP slurries,” J. Colloid Interface Sci. 263, 506 (2003).
22. H. Laun, C. Gabriel, and G. Schmidt, “Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux
densities of 1 T,” J. Non-Newtonian Fluid Mech. 148, 47 (2008).
23. H. H. Shen, “Granular shear flows—constitutive relations and internal structures,” in Fifteenth ASCE Engineering Mechanical Conference (Columbia University, 2002), pp. 1–7.
24. A. Karion and M. Hunt, “Wall stress in granular Couette flow of mono-sized particles and binary mixtures,” Powder Technol. 109, 145 (2000).
25. W. Losert, L. Bocquet, T. Lubensky, and J. Gollub, “Particle dynamics in sheared granular matter,” Phys. Rev. Lett. 85, 1428 (2000). 26Storm/CFD2000, www.adaptive-research.com.
27. P. Perzyna, “Fundamental problems in viscoplasticity,” Adv. Appl. Mech. 9, 243 (1966).
28. J. A. Tichy, “Hydrodynamic lubrication theory for the Bingham plastic flow model,” J. Rheol. 35, 477 (1991).
29. K. Gertzos, P. Nikolakopoulos, and C. Papadopoulos, “CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant,” Tribol. Int. 41, 1190 (2008).
30. http://www.tekscan.com/.
31. S. Ang, T. Scholz, A. Klocke, and G. Schneider, “Determination of elastic/plastic transition of human enamel by nanoindentation,” Dent. Mater. 15, 1403 (2009).
32. L. M. Cook, “Chemical processes in glass polishing,” J. Non-Cryst. Solids 120, 152 (1990).
33. Z. Shulman, V. Kordonski, E. Zaltsgendler, I. Prokhorov, B. Khusid, and S. Demchuk, “Structure, physical properties, and dynamics of magnetorheological suspensions,” Int. J. Multiphase Flow 12, 935 (1986).
34. A. Shorey, S. Gorodkin, and W. Kordonski, “Effect of process parameters on surface morphology in MRF,” Proc. SPIE TD02, 69 (2003).