ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.391.837.681.3]: [621 + 681: 723

Spectrometer for fluorescence–reflection biomedical research

For Russian citation (Opticheskii Zhurnal):

Kang Uk, Папаян Г.В., Березин В.Б., Петрищев Н.Н., Галагудза М.М. Спектрометр для флуоресцентно-отражательных биомедицинских исследований // Оптический журнал. 2013. Т. 80. № 1. С. 56–67.

 

Kang Uk, Papayan G.V., Berezin V.B., Petrishchev N.N., Galagudza M.M. Spectrometer for fluorescence–reflection biomedical research [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 1. P. 56–67.

For citation (Journal of Optical Technology):

Kang Uk, V. B. Berezin, G. V. Papayan, N. N. Petrishchev, and M. M. Galagudza, "Spectrometer for fluorescence–reflection biomedical research," Journal of Optical Technology. 80(1), 40-48 (2013). https://doi.org/10.1364/JOT.80.000040

Abstract:

A fluorescence–reflection multichannel fiber spectrometer has been developed that makes it possible to carry out a wide range of biomedical research, including estimating the concentration of glycation end-products in the skin and the oxidation–reduction state of various tissues. It has the feature of being able to simultaneously record diffuse reflection spectra and fluorescence emission. The fluorescence is excited by an LED that emits at 365 nm. The fluorescence spectra are recorded in the 400–750 nm region, while the reflection spectra are recorded in the 350–750 nm region. The convergence of the results of the measurements is 1.6%. A technique is proposed for correcting the autofluorescence index of the skin that makes it possible to sharply reduce its dependence on the degree of skin pigmentation. The possibilities of the device are illustrated by examples of biomedical research.

Keywords:

fluorescence spectroscopy, reflection spectroscopy, fluorescence diagnostics, autofluorescence

Acknowledgements:

The authors are grateful to Professor A. M. Esayan, Professor E. N. Grineva, E. A. Trofimova, M. V. Vadyukhina, and A. N. Nimgirova for organizing and participating in clinical research on estimating AGEs in the norm, with diabetes, and with renal failure. The authors also express gratitude to the Seoul City Government and the Seoul Institute of Development for supporting this work as part of the international program “Inviting & Supporting Project of Global Leading Institutions” (funds WR100001 for Russian Science Seoul).

OCIS codes: 170.0170, 170.6280, 170.6510, 170.3880, 170.3880, 170.1610, 170.4580

References:

1. V. V. Tuchin, ed., Optical Biomedical Diagnostics, vol. 2 (Fizmatlit, Moscow, 2007).
2. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).
3. G. V. Papayan and I. Ya. Barsky, “Contact luminescence spectrophotometry for biomedical studies,” Proc. SPIE 4515, 125 (2001).
4. A. Shahzad and G. Koehler, “Fluorescence spectroscopy: an emerging excellent diagnostic tool in medical sciences,” Internet J. Med. Technol. 5, No. 1 (2010).
5. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, and R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia,” Gynecol. Oncol. 52, 31 (1994).
6. M. Mitchell, S. B. Cantor, C. Brookner, U. Utzinger, and D. Schottenfeld, “Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix,” Obstet. Gynecol. 93, 462 (1999).
7. S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10, 024031 (2005).
8. A. Zuluaga, U. Utzinger, A. Durkin, H. Fuchs, A. Gillenwater, R. Jacob, B. Kemp, J. Fan, and R. Richards-Kortum, “Fluorescence excitation-emission matrices of human tissue: a system for in vivo measurement and data analysis,” Appl. Spectrosc. 53, 302 (1999).
9. V. B. Loschenov, V. I. Konov, and A. M. Prokhorov, “Photodynamic therapy and fluorescence diagnostics,” Laser Phys. 10, 1188 (2000).
10. N. N. Zharkova, D. N. Kozlov, Yu. N. Polivanov, R. L. Pykhov, and V. V. Smirnov, “Laser-excited fluorescence spectrometric system for tissue diagnostics,” Proc. SPIE 2328, 196 (1994).
11. K. A. Horvath, K. T. Schomacker, C. C. Lee, and L. H. Cohn, “Intraoperative myocardial ischemia detection with laser-induced fluorescence,” J. Thorac. Cardiovasc. Surg. 107, 220 (1994).
12. A. Mayevsky and G. G. Rogatsky, “Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies,” Am. J. Physiol. Lung Cell. Mol. Physiol. 292, 615 (2007).
13. M. Beránek, D. Nováková, P. Rozsíval, J. Drsata, and V. Palicka, “Glycation and advanced glycation end-products in laboratory experiments in vivo and in vitro,” Acta Medica (Hradec Kralove) 49, No. 1, 35 (2006).
14. R. Graaff, R. Meerwaldt, H. Lutgers, R. Baptist, E. de Jong, T. Andries, L. Smit, and G. Rakhorst, “Instrumentation for the measurement of autofluorescence in human skin,” Proc. SPIE 5692, 111 (2005).
15. H. L. Lutgers, R. Graaff, T. P. Links, L. J. Ubink-Veltmaat, H. J. Bilo, R. O. Gans, and A. J. Smit, “Skin autofluorescence as a noninvasive marker of vascular damage in patients with type-2 diabetes,” Diabetes Care 29, 2654 (2006).
16. R. Meervaldt, H. L. Lutgers, T. P. Links, R. Graaff, J. W. Baynes, R. Gans, and A. J. Smit, “Skin AF is a strong predictor of cardiac mortality in diabetes,” Diabetes Care 30, 107 (2007).
17. J. W. Hartog, S. Gross, L. H. Oterdoom, R. M. van Ree, A. P. de Vries, A. J. Smit, J. P. Schouten, P. P. Nawroth, R. O. Gans, W. J. van Son, A. Bierhaus,
and S. J. Bakker, “Skin autofluorescence is an independent predictor of graft loss in renal transplant recipients,” Transplantation 87, 1069 (2009).
18. R. Meerwaldt, T. P. Links, R. Graaff, K. Hoogenberg, J. D. Lefrandt, J. W. Baynes, R. O. Gans, and A. J. Smit, “Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy,” Diabetologia 48, 1637 (2005).
19. A. Goldin, J. A. Beckman, A. M. Schmidt, and M. A. Creager, “Advanced glycation end-products sparking the development of diabetic vascular injury,” Circulation 114, 597 (2006).
20. R. Meerwaldt, J. W. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687 (2005).
21. M. N. Ediger, R. D. Johnson, E. L. Hull, and C. D. Brown, “Determination of a measure of a glycation end-product or disease state using tissue fluorescence,” U.S. Patent No. 8078243 (2011).
22. E. Hull, M. Ediger, A. Unione, E. Deemer, M. Stroman, and J. Baynes, “Noninvasive, optical detection of diabetes: model studies with porcine skin,” Opt. Express 12, 4496 (2004).
23. J. D. Maynard, M. Rohrscheib, J. F. Way, C. M. Nguyen, and M. N. Ediger, “Noninvasive type-2 diabetes screening, superior sensitivity to fasting plasma glucose and A1C,” Diabetes Care 30, 1120 (2007).
24. K. Uk, G. V. Papayan, S.-J. Bae, V. B. Berezin, and S. Kim, “Fluorescence video dermatoscope,” Opt. Zh. 75, No. 1, 32 (2008) [J. Opt. Technol. 75, 24 (2008)].
25. K. Uk, G. V. Papayan, D. A. Makarov, S. Y. Lee, and S. J. Bae, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” Opt. Zh. 75, No. 12, 16 (2008) [J. Opt. Technol. 75, 772 (2008)].

26. O. Kim, J. McMurdy, C. Lines, S. Duffy, G. Crawford, and M. Alber, “Reflectance spectrometry of normal and bruised human skins: experiments and modeling,” Physiol. Meas. 33, 159 (2012).
27. R. S. Bradley and M. S. Thorniley, “A review of attenuation correction techniques for tissue fluorescence,” J. R. Soc., Interface 3, 1 (2006).
28. M. Koetsier, E. Nur, H. Chunmao, H. L. Lutgers, T. P. Links, A. J. Smit, G. Rakhorst, and R. Graaff, “Skin-color-independent assessment of aging using skin autofluorescence,” Opt. Express 18, 14416 (2010).
29. N. N. Petrishchev, G. V. Papayan, A. M. Esayan, E. N. Grineva, and K. Uk, “Study of glycation end-products by fluorescence spectroscopy of the skin. Photodynamic therapy and fluorescence diagnosis,” in Collection of Scientific Works, ed. N. N. Petrishcheva (Lan’, St. Petersburg, 2011), pp. 222–230.
30. N. N. Petrishchev and G. V. Papayan, “Autofluorescence organoscopy. Photodynamic therapy and fluorescence diagnosis,” in Collection of Scientific Works, ed. N. N. Petrishcheva (Lan’, St. Petersburg, 2011), pp. 261–273.