УДК: 535.4, 681.7.02-04, 681.787
Interference methods of testing the surface figure of large aspheric items, based on lens-type and holographic wave-front correctors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Семенов А.П., Абдулкадыров М.А., Патрикеев В.Е., Воробьев А.С., Шаров Ю.А. Интерференционные методы контроля формы поверхностей крупногабаритных асферических деталей на основе линзовых и голограммных корректоров волнового фронта // Оптический журнал. 2013. Т. 80. № 4. С. 33–38.
Semenov A.P., Abdulkadyrov M.A., Patrikeev V.E., Vorobiev A.S., Sharov Yu.A. Interference methods of testing the surface figure of large aspheric items, based on lens-type and holographic wave-front correctors [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 4. P. 33–38.
A. P. Semenov, M. A. Abdulkadyrov, V. E. Patrikeev, A. S. Vorobyov, and J. A. Sharov, "Interference methods of testing the surface figure of large aspheric items, based on lens-type and holographic wave-front correctors," Journal of Optical Technology. 80(4), 226-229 (2013). https://doi.org/10.1364/JOT.80.000226
This paper discusses the features of methods of testing aspheric primary mirrors of telescopes with lens-based, mirror–lens-based, and holographic correctors. Methods are described for simultaneously testing the same surface of an optical item with different correctors to achieve and confirm the required parameters of the aspheric (vertex radius and conic constant). Results are given for testing the correctors with a holographic mirror simulator to verify the fabrication accuracy of the correctors themselves and, if necessary, of the wave-front correction of the lens correctors.
astronomical aspheric mirrors, controlled shaping, interference monitoring, diffractive optical element
Acknowledgements:The authors are deeply grateful to the specialists of the Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, and especially to the laboratory manager Doctor of Technical Sciences A. G. Poleshchuk and to Candidate of Technical Sciences R. K. Nasyrov for fruitful collaboration, optical calculations, and fabrication of DOEs for this and other projects carried out and to be carried out at OAO LZOS.
OCIS codes: 220.0220, 220.0230, 220.4610, 350.1260
References:1. M. A. Abdulkadyrov, S. P. Belousov, A. N. Ignatov, and V. V. Rumyantsev, “Non-traditional technologies to fabricate lightweighted astronomical mirrors with high stability of surface shape,” Proc. SPIE 3786, 468 (1999).
2. A. P. Semenov, V. E. Patrikeev, A. V. Samuylov, and Y. A. Sharov, “Computer-controlled fabrication of large-size ground and space-based optics from glass ceramic Sitall CO-115M,” Proc. SPIE 3786, 474 (1999).
3. M. A. Abdulkadyrov, S. P. Belousov, A. N. Ignatov, V. E. Patrikeev, V. V. Pridnya, A. V. Polyanchikov, V. V. Rumyantsev, A. V. Samuylov, A. P. Semenov, and Y. A. Sharov, “Manufacturing of primary mirrors from Sitall CO-115M for European projects TTL, NOA and VST,” Proc. SPIE 4451, 131 (2001).
4. M. A. Abdulkadyrov, A. N. Ignatov, V. E. Patrikeev, V. V. Pridnya, F. V. Polyanchikov, A. P. Semenov, Y. A. Sharov, E. Atad-Ettengui, I. Egan, R. J. Bennet, and S. C. Craig, “M1 and M2 mirrors manufacturing for VISTA telescope,” Proc. SPIE 5494, 374 (2004).
5. A. M. McPherson, A. Born, W. Sutherland, J. Emerson, B. Little, P. Jeffers, N. Stewart, J. Murray, and K. Ward, “VISTA: project status,” Proc. SPIE 6267, 626707 (2006).
6. A. P. Semenov, M. A. Abdulkadyrov, S. P. Belousov, A. P. Patrikeev, V. E. Patrikeev, and Y. A. Sharov, “Technological features of the fabrication of the primary mirrors of telescopes,” Opt. Zh. 80, No. 4, 8 (2013) [J. Opt. Technol. 80 (2013)].
7. M. A. Abdulkadyrov, S. P. Belousov, V. V. Pridnya, A. V. Polyanchikov, and A. P. Semenov, “Optimizing the shaping technology and test methods for convex aspheric surfaces of large optical items,” Opt. Zh. 80, No. 4, 24 (2013) [J. Opt. Technol. 80 (2013)].
8. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, and V. P. Kyrianov, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38, 1295 (1999).