ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.343.2; 544.034.24

Using a Tm:YLF laser to determine the diffusion coefficient of chromium in ZnSe

For Russian citation (Opticheskii Zhurnal):

Родин С.А., Балабанов С.С., Гаврищук Е.М., Еремейкин О.Н. Использование Tm:YLF лазера для определения коэффициента диффузии хрома в ZnSe // Оптический журнал. 2013. Т. 80. № 5. С. 89–93.

 

Rodin S.A., Balabanov S.S., Gavrishchuk E.M., Eremeykin O.N. Using a Tm:YLF laser to determine the diffusion coefficient of chromium in ZnSe [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 5. P. 89–93.

For citation (Journal of Optical Technology):

S. A. Rodin, S. S. Balabanov, E. M. Gavrishchuk, and O. N. Eremeykin, "Using a Tm:YLF laser to determine the diffusion coefficient of chromium in ZnSe," Journal of Optical Technology. 80(5), 325-328 (2013). https://doi.org/10.1364/JOT.80.000325

Abstract:

This paper presents an express technique for determining the diffusion coefficients of chromium in ZnSe, using a Tm:YLF laser that emits at 1.908 μm. The diffusion coefficients of chromium in ZnSe obtained by deposition from the vapor phase are determined to be D  9.5  0.6 × 10−9 cm 2∕s and D  1.0  0.1 × 10−9 cm 2∕s at 1100°C and 900°C, respectively. The absorption cross section of Cr 2 ions in zinc selenide at 1.908 μm was 4.6 × 10−19 cm 2.

Keywords:

Tm:YLF laser, optical density, ZnSe:Cr, diffusion coefficient

OCIS codes: 140.3070, 160.3380, 160.5690

References:

1. I. S. Moskalev, V. V. Fedorov, and S. B. Mirov, “Tunable, single-frequency, and multi-watt continuous-wave Cr 2:ZnSe lasers,” Opt. Express 16, 4145 (2008).
2. V. V. Fedorov, A. Gallian, I. S. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition-metal-doped II–VI semiconductors,” J. Lumin. 125, 184 (2007).
3. A. Gallian, V. V. Fedorov, and S. B. Mirov, “Hot-pressed ceramic Cr 2:ZnSe gain-switched laser,” Opt. Express 14, 11694 (2006).
4. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin, “Erbium fiber laser-pumped continuous-wave microchip Cr 2:ZnS and Cr 2:ZnSe lasers,” Opt. Lett. 27, 909 (2002).
5. Yu. F. Vaksman, V. V. Pavlov, Yu. A. Nitsuk, Yu. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Preparation and optical properties of codoped ZnSe single crystals,” Fiz. Tekh. Poluprovodn. 40, 815 (2006) [Semiconductors 40, 785 (2006)].
6. Yu. F. Vaksman, V. V. Pavlov, Yu. A. Nitsuk, Yu. N. Purtov, A. S. Nasibov, and P. V. Shapkin, “Optical absorption and chromium diffusion in ZnSe single crystals,” Fiz. Tekh. Poluprovodn. 39, 401 (2005) [Semiconductors 39, 377 (2005)].
7. J. O. Ndap, K. Chattopadhyay, O. O. Adetunji, D. E. Zelmon, and A. Burger, “Thermal diffusion of Cr 2 in bulk ZnSe,” J. Cryst. Growth 240, 176 (2002).
8. N. N. Il’ichev, S. E. Mosaleva, P. V. Shapkin, and A. S. Nasibov, “Cobalt diffusion during doping of ZnSe single crystals,” Inorg. Mater. 43, 1050 (2007).
9. U. Demirbas, A. Sennaroglu, and M. Somer, “Synthesis and characterization of diffusion-doped Cr 2:ZnSe and Fe2:ZnSe,” Opt. Mater. 28, 231 (2006).
10. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, London, 2007; Intellekt, Dolgoprudnyĭ, 2011), p. 50.