УДК: 53.02, 535.1, 665.6/.7
Method and apparatus for the remote detection, recognition, and quantitative analysis of oil spills on a sea surface
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мельников Г.С., Самков В.М., Товбин Б.С., Дерин О.А. Метод и аппаратура дистанционного обнаружения, распознавания и количественного анализа разливов нефти на морской поверхности // Оптический журнал. 2013. Т. 80. № 6. С. 36–42.
Melnikov G.S., Samkov V.M., Tovbin B.S., Derin O.A. Method and apparatus for the remote detection, recognition, and quantitative analysis of oil spills on a sea surface [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 6. P. 36–42.
G. S. Mel’nikov, V. M. Samkov, B. S. Tovbin, and O. A. Derin, "Method and apparatus for the remote detection, recognition, and quantitative analysis of oil spills on a sea surface," Journal of Optical Technology. 80(6), 355-359 (2013). https://doi.org/10.1364/JOT.80.000355
Many years of research in oil films and background formations on a sea surface, using IR apparatus for remote probing, have made it possible to establish a method for round-the-clock monitoring of the ecological safety of ocean drilling towers and to work out the requirements on an apparatus complex in order to implement the method.
wavy sea surface, water–atmosphere media, oil “lens”, skin layer,oil spill detection
OCIS codes: 010.0010, 110.0110, 120.3930, 260.3060
References:1. G. S. Mel’nikov, S. S. Zenchenko, V. I. Povarkov, and V. M. Samkov, “Experimental studies of the dependence of thermal radiation of a wavy water surface on the observation angle,” in Collection. Optical Methods of Studying Oceans and Inland Water Areas (Izd. Akad. Nauk SSSR, Tallin, 1980), pp. 40–45.
2. G. S. Mel’nikov, E. N. Mineev, and A. S. Tibilov, “The effect of surface-active substances on the radiative temperature of a sea surface,” in First Congress of Soviet Oceanologists. Abstracts of Reports, No. 1, Physics of the Ocean (Morskaya Tekh., Moscow, 1977), p. 157.
3. G. S. Mel’nikov, “Determining the surface temperature drop at the sea–atmosphere interface,” in Optical Methods of Studying the Oceans and Inland Water Areas (Nauka, Novosibirsk, 1979).
4. N. A. Ivanova, “Radar probing of surface contaminants of the sea from space: model investigations and some applications,” Author’s Abstract of a Dissertation for Candidate of Physicomathematical Sciences, Russian State Hydrometeorological University, St. Petersburg, 2008, http://www.rshu.ru/files/2008_ivanova.pdf.
5. V. I. Solov’ev and A. B. Uspenskiı˘, “Modern status and prospects of development of remote methods of determining the surface temperature of the ocean from space,” Issled. Zemli iz Kosmosa No. 1, 102 (1998).
6. Yu. I. Belousov, D. V. Ivanov, and A. B. Utenkov, “Model of the IR radiation of the wavy surface of the sea,” Opt. Zh. 65, No. 11, 59 (1998) [J. Opt. Technol. 65, 816 (1998)].
7. A. Z. Zurabyan, “Optical method of remote measurement of the thickness of a petroleum film on the surface of a body of water,” Opt. Zh. 65, No. 11, 67 (1998) [J. Opt. Technol. 65, 924 (1998)].
8. E. G. Andreev, G. I. Akhapkin, V. Yu. Vytyaganets, A. V. Kozar’, G. G. Pirogov, and Yu. A. Khundzhua, “Selective IR radiometer for measuring the temperature gradient in a thin surface film of the sea,” in Optical Methods of Studying the Oceans and Inland Water Areas (Akad. Nauk SSSR, Tallin, 1980), pp. 257–260.
9. E. F. Demidov and E. V. Lukina, “Quantitative estimates of thermal nonuniformities on a wavy sea surface,” Opt. Zh. 59, No. 2, 29 (1992) [J. Opt. Technol. 59, 88 (1992)].
10. Yu. A. Byakov, Yu. I. Soldatov, R. P. Kruglyakova, V. M. Samkov, V. I. Solov’ev, and S. I. Kotyashkin, Patent on a useful model No. 200413 4674/22 (037723) (2004).
11. I. T. Bubukin and K. S. Stankevich, “Radiometry of the thermal film of the sea surface,” Usp. Sovrem. Radioélek. No. 11, 39 (2006).
12. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnova, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984).