ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.33

Twofold light-pulse regeneration under conditions of electromagnetically induced transparency

For Russian citation (Opticheskii Zhurnal):

Лосев А.С., Трошин А.С. Двукратное восстановление светового импульса в условиях электромагнитно-индуцированной прозрачности // Оптический журнал. 2013. Т. 80. № 7. С. 33–38.

 

Losev A.S., Troshin A.S. Twofold light-pulse regeneration under conditions of electromagnetically induced transparency [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 33–38.

For citation (Journal of Optical Technology):

A. S. Losev and A. S. Troshin, "Twofold light-pulse regeneration under conditions of electromagnetically induced transparency," Journal of Optical Technology. 80(7), 431-434 (2013). https://doi.org/10.1364/JOT.80.000431

Abstract:

This paper shows that it is theoretically possible for a medium to generate two copies of an incoming probe pulse as a result of the successive action of two control pulses under conditions of electromagnetically induced transparency. The medium is treated in the model of two-level atoms with threefold degeneration of the lower level (tripod configuration). The three laser-radiation pulses differ in polarization, and the propagation directions of the probe pulse and the two control pulses are orthogonal. The calculation uses a semiclassical approach, the slow-amplitude approximation, and the fixed-field approximation of the control pulses.

Keywords:

electromagnetically induced transparency, pulses copying, tripod configuration, degeneration of energy levels

OCIS codes: 210.4770, 210.4680

References:

1. E. Arimondo, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” in Progress in Optics, E. Wolf,
ed., Vol. 35 (Elsevier Science, Amsterdam, 1996), pp. 257–354.
2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, No. 7, 36 (1997).
3. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, New York, 1997; Fizmatlit, Moscow, 2003).
4. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Phys. 45, 471 (1998).
5. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633 (2005).
6. É. E. Fradkin, V. V. Kozlov, and M. V. Voronov, “Induced transparency under transient Raman scattering conditions,” Kvant. Elektron. (Moscow) 29, 239 (1999) [Quantum Electron. 29, 794 (1999)].
7. A. J. Olson and S. K. Mayer, “Electromagnetically induced transparency in rubidium,” Am. J. Phys. 77, 116 (2009).
8. D. McGloin, D. J. Fulton, and M. H. Dunn, “Electromagnetically induced transparency in N-level cascade schemes,” Opt. Commun. 190, 221 (2001).
9. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666 (1995).
10. I. V. Zelenskiı˘ and V. A. Mironov, “Electromagnetically induced transparency in degenerate two-level systems,” Zh. Eksp. Teor. Fiz. 121, 1068 (2002) [JETP 94, 901 (2002)].
11. A. S. Losev and A. S. Troshin, “Variants of controlling light pulses under conditions of electromagnetically induced transparency with energy degeneracy,” Opt. Spektrosk. 110, 71 (2011) [Opt. Spectrosc. 110, 71 (2011)].
12. E. Paspalakis and P. L. Knight, “Transparency, slow light and enhanced nonlinear optics in a four-level scheme,” J. Opt. B 4, S372 (2002).
13. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
14. A. S. Losev and A. S. Troshin, “Reproduction of complex optical pulses of various polarizations with electromagnetically induced transparency,” Uch. Zap. KGU. Fiz.-Mat. Nauki 152, 119 (2010).
15. J. Ruseckas, A. Mekys, and G. Juzeliunas, “Optical vortices of slow light using a tripod scheme,” J. Opt. 13, 064013 (2011).
16. A. S. Losev and A. S. Troshin, “Copying of a light pulse in conditions of electromagnetically induced transparencies,” in Materials of the Seventh International Conference on Fundamental Problems of Optics 2012, St. Petersburg, 2012, pp. 356–359.
17. D. A. Steck, “Rubidium 87 D Line Data” revision 2.1.4, 23 Dec. 2010, available online at http://steck.us/alkalidata.
18. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-radiance. Multiatomic Coherent Emission (Institute of Physics Publishing, Philadelphia, 1996).
19. V. G. Dmitriev and L. V. Tarasov, Applied Nonlinear Optics. Generators of the Second Harmonic and Parametric Light Generators (Radio i Svyaz’, Moscow, 1982).
20. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783 (2001).
21. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490 (2001).
22. V. G. Arkhipkin and I. V. Timofeev, “Electromagnetically induced transparency; writing, storing, and reading short optical pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 76, 74 (2002) [JETP Lett. 76, 66 (2002)].
23. N. A. Vasil’ev and A. S. Troshin, “On controlling light pulses under conditions of electromagnetic transparency,” Izv. Ross. Akad. Nauk Ser. Fiz. 69, 1096 (2005).
24. A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, “Radiation trapping in coherent media,” Phys. Rev. Lett. 87, 133601 (2001).