ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.37, 535.36

System for the optical diagnosis of tumors, and using it to identify pituitary adenoma

For Russian citation (Opticheskii Zhurnal):

Немкович Н.А., Шанько Ю.Г., Собчук А.Н., Рубинов А.Н., Крученок Ю.В., Чухонский А.И. Система оптической диагностики опухолей и идентификация с ее помощью аденомы гипофиза // Оптический журнал. 2014. Т. 81. № 10. С. 30–41.

 

Nemkovich N.A., Shanko Yu.G., Sobchuk A.N., Rubinov A.N., Kruchenok Yu.V., Chukhonskiy A.I. System for the optical diagnosis of tumors, and using it to identify pituitary adenoma [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 10. P. 30–41.

For citation (Journal of Optical Technology):

N. A. Nemkovich, A. N. Sobchuk, A. N. Rubinov, Yu. V. Kruchenok, Yu. G. Shan’ko, and A. I. Chukhonskiĭ, "System for the optical diagnosis of tumors, and using it to identify pituitary adenoma," Journal of Optical Technology. 81(10), 578-585 (2014). https://doi.org/10.1364/JOT.81.000578

Abstract:

This paper discusses the autofluorescence kinetics of healthy and tumorous tissues of the pituitary, as well as their diffuse scattering spectra in the wavelength ranges, respectively, of 380–600 and 350–1000 nm. Measurements were made by means of apparatus consisting of two units, a time-correlated photon-counting system, and a unit for exciting and recording the spectra of diffusely scattered light. It is found that a significant difference is observed in the mean autofluorescence time of tumorous and healthy tissues in the 380–600-nm spectral range. It is established that the intensity of diffusely reflected light is significantly lower in samples of healthy tissues than in samples of pituitary adenoma in the wavelength range 650–1000 nm. The sensitivity and specificity of the identification of the pituitary tissues after the data were processed by means of discriminant analysis were 100%.

Keywords:

autofluorescence of tissues, diffusely scattered light, time-correlated photon counting, pituitary adenoma

OCIS codes: 170.3650, 170.3810, 170.3890, 170.4580, 170.6280, 170.6510, 170.1610

References:

1. P. Kleihouse and W. K. Cavanee, World Health Organization Classifications of Tumors: Tumors of the Nervous System—Pathology and Genetics (IARC Press, Lyon, France, 2000).
2. WHO Classification of Tumours of the Central Nervous System, D. N. Louis, H. Ohgaki, O. D. Wiestler, and W. K. Cavenee, eds. (IARC, Lyon, France, 2007).
3. D. G. Grigor’ev, P. A. Laı˘ko, D. D. Nikulin, E. Yu. Kvetinskaya, E. D. Cherstvyı˘, and M. V. Talabaev, “Urgent pathomorphological diagnosis of tumors of the central nervous system by the method of crushed specimens,” Zdravookhran. Nauch. Praktich. Ezhemes. Zh. No. 2, 62 (2010).
4. V. V. Tuchin, ed., Optical Biomedical Diagnosis, vol. 2 (Fizmatlit, Moscow, 2007).
5. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999).
6. R. Richards-Kortum and E. Sevick Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555 (1996).
7. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110, 2641 (2010).
8. H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke, and Y. Urano, “New strategies for fluorescent probe design in medical diagnostic imaging,” Chem. Rev. 110, 2620 (2010).
9. P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, “Fluorescence lifetime spectroscopy for guided therapy of brain tumors,” Neuroimage 54, S125 (2011).
10. D. L. Heintzelman, U. Utzinger, and H. Fuchs, “Optimal excitation wavelengths for in vivo detection of oral neoplasia using fluorescence spectroscopy,” Photochem. Photobiol. 72, No. 1, 103 (2000).
11. W. C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, “Brain tumor demarcation using optical spectroscopy; an in vitro study,” J. Biomed. Opt. 5, 214 (2000).
12. M. F. Mitchell, S. B. Cantor, N. Ramanujam, G. Tortolero-Luna, and R. Richards-Kortum, “Fluorescence spectroscopy for diagnosis of squamous intraepithelial lesions of the cervix,” Obstet. Gynecol. 93, 462 (1999).
13. F. Koenig and F. J. McGovern, “Fluorescence detection of bladder carcinoma,” Urology 50, 778 (1997).
14. R. Richards-Kortum, R. P. Rava, R. E. Petras, M. Fitzmaurice, M. Sivak, and M. S. Feld, “Spectroscopic diagnosis of colonic dysplasia,” Photochem. Photobiol. 53, 777 (1991).
15. B. W. Chwirot, S. Chwirot, N. Sypniewska, Z. Michniewicz, J. Redzinski, G. Kurzawski, and W. Ruka, “Fluorescence in situ detection of human cutaneous melanoma: study of diagnostic parameters of the method,” J. Invest. Dermatol. 117, 1449 (2001).
16. G. Salomon, T. Hess, A. Erbersdobler, C. Eichelberg, S. Greschner, A. N. Sobchuk, A. K. Korolik, N. A. Nemkovich, Ju. Schreiber, C. Gerich, M. Graefen, and H. Huland, “Prostate cancer detection by laser-induced autofluorescence and multicomponent spectroscopy,” Proc. SPIE 6734, 67340 (2007).

17. G. Salomon, T. Hess, A. Erbersdobler, C. Eichelberg, S. Greschner, A. V. Korolik, A. N. Sobchuk, N. A. Nemkovich, M. Graefen, and H. Huland, “Feasibility of prostate cancer detection by triple spectroscopy,” Eur. Urol. 55, 376 (2009).
18. K. Uk, G. V. Papayan, V. B. Berezin, N. N. Petrishchev, and M. M. Galagudza, “Spectrometer for fluorescence reflection biomedical research,” Opt. Zh. 80, No. 1, 56 (2013) [J. Opt. Technol. 80, 40 (2013)].
19. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603 (1998).
20. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, Nos. 1–2, 89 (2000).
21. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. D 35, No. 9, 61 (2002).
22. J. Blackwell, K. Katika, L. Pilon, K. M. Dipple, S. R. Levin, and A. Nouvong, “In vivo time-resolved autofluorescence measurements to test for glycation of human skin,” J. Biomed. Opt. 13, 014004 (2008).
23. L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt. 15, 011106 (2010).
24. L. Marcu, “Fluorescence lifetime techniques in medical applications,” Ann. Biomed. Eng. 40, 304 (2012).
25. P. Ashjian, A. Elbarbary, P. Zuk, D. A. DeUgarte, P. Benhaim, L. Marcu, and M. H. Hedrick, “Noninvasive in situ evaluation of osteogenic differentiation by time-resolved laser-induced fluorescence spectroscopy,” Tissue Eng. 10, 411 (2004).
26. B. Z. Fite, M. Decaris, Y. Sun, A. Lam, C. K. Ho, J. K. Leach, and L. Marcu, “Noninvasive multimodal evaluation of bioengineered cartilage constructs combining time-resolved fluorescence and ultrasound imaging,” Tissue Eng. Part C. Methods 17, 495 (2011).
27. U. Utzinger and R. Richards-Kortum, “Fiber-optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8, No. 1, 121 (2003).
28. R. Dios and A. A. Cohen-Gadol, “Technical principles and neurosurgical applications of fluorescein fluorescence using a microscope-integrated fluorescence module,” Acta Neurochir. 155, 701 (2013).
29. W. Stummer, “Fluorescein for vascular and oncological neurosurgery,” Acta Neurochir. 155, 1477 (2013).
30. V. Chalau, J. Didelon, J. Istomin, M. Samtsov, E. Voropay, D. Wolf, and F. Guillemin, “In vivo cancer diagnostics by space-resolved diffuse reflectance spectroscopy,” Proc. SPIE 5141, 333 (2003).
31. L. Lovat and S. Bown, “Elastic scattering spectroscopy for detection of dysplasia in Barrett’s Esophagus,” Gastrointest. Endosc. Clin. N. Am. 14, 507 (2004).
32. W.-C. Lin, D. I. Sandberg, M. Johnson, S. Oh, J. Ragheb, and S. Bhatia, “Diffuse reflectance spectroscopy for in vivo pediatric brain tumor detection,” J. Biomed. Opt. 15, 061709 (2010).
33. A. Kim, M. Roy, F. Dadani, and B. C. Wilson, “A fiberoptic reflectance probe with multiple source–collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express 18, 5580 (2010).
34. Y. Guoqiang, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and P. Saha Sibu, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16, 027004 (2011).
35. L. Lovat, K. Johnson, G. Mackenzie, B. Clark, M. Novelli, S. Davies, M. O’Donovan, C. Selvasekar, S. Thorpe, D. Pickard, R. Fitzgerald, T. Fearn, I. Bigio, and S. Bown, “Elastic scattering spectroscopy accurately detects high grade dysplasia and cancer in Barrett’s oesophagus,” Gut 55, 1078 (2006).
36. K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. Phelps, and N. Ramanujam, “Portable, fiber-based, diffuse reflection spectroscopy (DRS) systems for estimating tissue optical properties,” Appl. Spectrosc. 62, 206 (2011).
37. V. Krishnaswamy, P. Hoopes, K. Samkoe, J. O’Hara, T. Hasan, and B. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt. 14, 014004 (2009).
38. S. Toms, W. Lin, R. Weil, M. Johnson, E. Jansen, and A. Mahadevan-Jansen, “Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity,” Neurosurgery 57, 327 (2007).
39. W. Lin, A. Mahadevan-Jansen, M. Johnson, R. Weil, and S. Toms, “In vivo optical spectroscopy detects radiation damage in brain tissue,” Neurosurgery 57, 518 (2005).
40. A. Croce, S. Fiorani, D. Locatelli, R. Nano, M. Ceroni, F. Tancioni, E. Giombelli, E. Benericetti, and G. Bottiroli, “Diagnostic potential of autofluorescence for an assisted intraoperative delineation of glioblastoma resection margins,” Photochem. Photobiol. 77, No. 3, 309 (2003).
41. W. Lin, S. Toms, M. Johnson, E. Jansen, and A. Mahadevan-Jansen, “In vivo brain tumor demarcation using optical spectroscopy,” Photochem. Photobiol. 73, 396 (2001).
42. B. Pogue, S. Gibbs-Strauss, P. Valdes, K. Samkoe, D. Roberts, and K. Paulsen, “Review of neurosurgical fluorescence imaging methodologies,” IEEE J. Sel. Top. Quantum Electron. 16, 493 (2010).
43. E. Van Meir, C. Hadjipanayis, A. Norden, H. Shu, P. Wen, and J. Olson, “Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma,” CA Cancer J. Clin. 60, 166 (2010).
44. F. Floeth and W. Stummer, “The value of metabolic imaging in diagnosis and resection of cerebral gliomas,” Nat. Clin. Pract. Neurol. 1, No. 2, 62 (2005).
45. A. Hartov, S. Ji, K. Erkmen, N. Simmons, K. Paulsen, and D. Roberts, “Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker,” J. Neurosurg. 115, No. 1, 11 (2011).
46. W. Stummer, U. Pichlmeier, T. Meinel, O. Wiestler, F. Zanella, and H. Reulen, “Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicenter phase III trial,” Lancet Oncol. 7, 392 (2006).
47. P. Valdes, Z. Moses, A. Kim, C. Belden, B. Wilson, K. Paulsen, D. Roberts, and B. Harris, “Gadolinium and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood–brain barrier breakdown,” J. Neuropathol. Exp. Neurol. 71, 806 (2012).
48. C. Hadjipanayis, H. Jiang, D. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol. 38, 109 (2011).
49. B. Montcel, L. Mahieu-Williame, X. Armoiry, D. Meyronet, and J. Guyotat, “Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low-grade gliomas and infiltrative component of glioblastomas,” Biomed. Opt. Express 4, 548 (2013).
50. A. Kim, M. Khurana, Y. Moriyama, and B. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15, 067006 (2010).
51. P. Valdes, A. Kim, F. Leblond, O. Conde, B. Harris, K. Paulsen, B. Wilson, and D. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011).
52. M. Eljamel, G. Leese, and H. Moseley, “Intraoperative optical identification of pituitary adenomas,” J. Neuro-Oncol. 92, 417 (2009).
53. N. Nemkovich and A. Sobchuk, “System for optical diagnosis of tumorous tissue,” Belarusan Patent No. 9008 (2012); Russian Patent No. 131,184 (2013).
54. M. I. Demchuk and M. A. Ivanov, Statistical Single-Quantum Method in Physical Experiment (Izvo. BGU, Minsk: 1981).
55. A. S. Kozlovsky, N. A. Nemkovich, A. N. Rubinov, and Yu. V. Zvinevich, “Automated laser spectrofluorimeter for biology and medicine,” Proc. SPIE 2388, 347 (1995).
56. G. Striker, Effective Implementation of Modulating Functions. Deconvolution and Reconvolution of Analytical Signals (University Press, Nancy, France, 1982), pp. 329–357.
57. I. S. Enyukov, ed., Factorial, Discriminant, and Cluster Analysis (Finansy i Statistika, Moscow, 1989).
58. M. Skala, K. Riching, D. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. Eliceiri, P. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).