ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.012.21, 535.016, 535.557

Symmetrical optical response in the hybrid-oriented twist structure of a dual-frequency nematic liquid crystal

For Russian citation (Opticheskii Zhurnal):

Иванов А.В., Вакулин Д.А., Коншина Е.А. Симметричный оптический отклик в гибридно-ориентированной твист-структуре двухчастотного нематического жидкого кристалла // Оптический журнал. 2014. Т. 81. № 3. С. 23–29.

 

Ivanov A.V., Vakulin D.A., Konshina E.A. Symmetrical optical response in the hybrid-oriented twist structure of a dual-frequency nematic liquid crystal [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 3. P. 23–29.

For citation (Journal of Optical Technology):

A. V. Ivanov, D. A. Vakulin, and E. A. Konshina, "Symmetrical optical response in the hybrid-oriented twist structure of a dual-frequency nematic liquid crystal," Journal of Optical Technology. 81(3), 130-134 (2014). https://doi.org/10.1364/JOT.81.000130

Abstract:

The reorientation dynamics of the director, which affects the optical response of a dual-frequency nematic liquid crystal under the action of an electric field in cells with hybrid-oriented twist structure, has been studied in the framework of continuum theory. The proposed model makes it possible to find the angular distribution of the director for arbitrary values of both the elastic constants and the initial tilt angles. Hydrodynamic flow was neglected in the calculations. It is shown that, for a specific liquid crystal, the turn-on and turn-off times of the cell can be equal when sinusoidal signal pulses with low and high frequencies are applied to it at definite voltages.

Keywords:

dual-frequency liquid crystal, hybrid-oriented structures, reorientation dynamics

Acknowledgements:

This work was begun with the support of the Ministry of Education and Science of the Russian Federation under Contract 11.519.11.4010 and was continued with financing from the centralized resources of the National Research University of Information Technologies, Mechanics, and Optics.

OCIS codes: 160.3710, 230.3720,120.6780, 130.6780

References:

1. G. Derfel, “Stationary states of hybrid aligned flexoelectric nematic layers,” Liq. Cryst. 34, 1201 (2007).
2. Y.-Q. Lu, X. Liang, Y.-H. Wu, F. Du, and S.-T. Wua, “Dual-frequency addressed hybrid-aligned nematic liquid crystal,” Appl. Phys. Lett. 85, 3354 (2004).
3. J. S. Gwag, K. Sohn, Y.-K. Kim, and J.-H. Kim, “Electro-optical characteristics of a chiral hybrid in-plane switching liquid-crystal mode for high brightness,” Opt. Express 16, 12220 (2008).
4. J.-J. P. Drolet, J. S. Patel, K. G. Haritos, W. Xu, A. Scherer, and D. Psaltis, “Hybrid-aligned nematic liquid-crystal modulators fabricated on VLSI circuits,” Opt. Lett. 20, 2222 (1995).
5. S. A. Jewell, T. S. Taphouse, and J. R. Sambles, “Rapid switching in a dual-frequency hybrid aligned nematic liquid crystal cell,” Appl. Phys. Lett. 87, 021106 (2005).

6. A. Kubono, Y. Kyokane, R. Akiyama, and K. Tanaka, “Effects of cell parameters on the properties of hybrid twisted nematic displays,” Appl. Phys. 90, 5859 (2001).
7. E. A. Konshina, N. L. Ivanova, P. S. Parfenov, and M. A. Fedorov, “Reorientation dynamics of a dual-frequency nematic single crystal with quasi-homeotropic structure,” Opt. Zh. 77, No. 12, 45 (2010) [J. Opt. Technol. 77, 770 (2010)].
8. E. A. Konshina, D. A. Vakulin, N. L. Ivanova, E. O. Gavrish, and V. N. Vasil’ev, “Optical response from dual-frequency hybrid-aligned nematic liquid crystal cells,” Zh. Tekh. Fiz. 82, No. 5, 66 (2012) [Tech. Phys. 57, 644 (2012)].
9. S. P. Palto, “An algorithm for solving the optical problem for stratified anisotropic media,” Zh. Eksp. Teor. Fiz. 119, 638 (2001) [JETP 92, 552 (2001)].
10. C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883 (1933).
11. F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19 (1958).
12. F. M. Leslie, “Some constitutive relations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265 (1968).
13. I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals (Taylor & Francis, London, 2004).
14. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 2345 (2001).
15. C.-J. Chen, A. Lien, and M. I. Nathan, “Simple method for the calculation of the deformation profiles in chiral nematic liquid crystal cells with asymmetric pretilt,” J. Appl. Phys. 81, 70 (1997).
16. G. V. Simonenko, V. I. Tsoı˘, and D. A. Yakovlev, “Method of computing the alignment angles of the optical axis of an LC in an external electric field,” Komp. Opt. 21, 88 (2001).
17. H. J. Deuling, “Deformation pattern of twisted nematic liquid crystal layers in an electric field,” Mol. Cryst. Liq. Cryst. 27, 81 (1974).
18. N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006).
19. H. Kresse, Physical Properties of Liquid Crystals: Nematics (IEEE, London, 2001).
20. W. Maier and G. Meier, “Eine einfache Theorie der dielectrischen Eigenschaftenhomologen orientierter Kristallin-flü ssiger Phasen des Nematischen Typs,” Z. Naturforsch. A 16, 262 (1961).
21. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, Oxford, 1993).
22. S. P. Palto, “Electrooptics and photonics of liquid crystals,” Usp. Fiz. Nauk 175, 784 (2005) [Phys.–Usp. 48, 747 (2005)].