ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.14

Broad-band sources of single-photon pulses, based on spontaneous parametric scattering in nonlinear impurity crystals

For Russian citation (Opticheskii Zhurnal):

Акатьев Д.О., Калачев А.А., Латыпов И.З., Самарцев В.В., Шкаликов А.В. Узкополосные источники однофотонных импульсов на основе спонтанного параметрического рассеяния в примесных нелинейных кристаллах // Оптический журнал. 2014. Т. 81. № 8. С. 5–9.

 

Akatiev D.O., Kalachev A.A., Latypov I.Z., Samartsev V.V., Shkalikov A.V. Broad-band sources of single-photon pulses, based on spontaneous parametric scattering in nonlinear impurity crystals [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 8. P. 5–9.

For citation (Journal of Optical Technology):

D. O. Akat’ev, A. A. Kalachev, V. V. Samartsev, I. Z. Latypov, and A. V. Shkalikov, "Broad-band sources of single-photon pulses, based on spontaneous parametric scattering in nonlinear impurity crystals," Journal of Optical Technology. 81(8), 423-426 (2014). https://doi.org/10.1364/JOT.81.000423

Abstract:

This paper discusses the possibilities of using spontaneous parametric scattering (SPS) in impurity crystals with a periodic domain structure for the efficient generation of narrow-band single-photon pulses. Using a periodically poled potassium titanyl phosphate crystal doped with trivalent erbium ions as an example, it is shown that, in the case of a nonlinear crystal with a periodic domain structure, allowing the generation of photons on the opposite sides, the width of the SPS spectrum can be less than the free spectral zone of a single-cavity parametric generator based on this crystal. Such an SPS regime can be useful when creating narrow-band sources of single-photon states that can be recorded and reproduced in optical quantum-memory devices, as well as for combining SPS processes and quantum memory in a single medium—a nonlinear impurity crystal.

Keywords:

spontaneous parametric scattering, single-photon source

Acknowledgements:

This work was carried out with the partial support of the Russian Foundation for Basic Research (Grants No. 12-02-00651 and 13-02-01090).

OCIS codes: 190.4410, 270.5585

References:

1. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
2. K. Hammerer, A. S. Sørensen, and E. S. Polzik, “Quantum interface between light and atomic ensembles,” Rev. Mod. Phys. 82, 1041 (2010).
3. W. Tittel, M. Afzelius, T. Chaneliére, R. L. Cone, S. Kröll, S. A. Moiseev, and M. Sellars, “Photon-echo quantum memory in solid-state systems,” Laser Photon. Rev. 4, 244 (2010).
4. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1 (2010).
5. D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Kvant. Elektron. (Moscow) 4, 1056 (1977) [Quantum Electron. 7, 591 (1977)].
6. C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58 (1986).
7. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric down-conversion,” Laser Phys. 15, 146 (2005).
8. Z. Y. Ou and Y. J. Lu, “Cavity-enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556 (1999).
9. M. Scholz, F. Wolfgramm, U. Herzog, and O. Benson, “Narrow-band single photons from a single-resonant optical parametric oscillator far below threshold,” Appl. Phys. Lett. 91, 191104 (2007).
10. B. M. Nielsen, J. S. Neergaard-Nielsen, and E. S. Polzik, “Time gating of heralded single photons for atomic memories,” Opt. Lett. 34, 3872 (2009).
11. F. Wolfgramm, Y. A. de Icaza Astiz, F. A. Beduini, A. Cer, and M. W. Mitchell, “Atom-resonant heralded single photons by interaction-free measurement,” Phys. Rev. Lett. 106, 053602 (2011).
12. H. Zhang, X.-M. Jin, J. Yang, H.-N. Dai, S.-J. Yang, T.-M. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G.-S. Pan, Z.-S. Yuan, Y. Deng, Z.-B. Chen, X.-H. Bao, S. Chen, B. Zhao, and J.-W. Pan, “Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory,” Nat. Photonics 5, 628 (2010).
13. C.-S. Chuu, G. Y. Yin, and S. E. Harris, “A miniature ultrabright source of temporally long, narrow-band biphotons,” Appl. Phys. Lett. 101, 051108 (2012).
14. A. Kalachev, “Pulse shaping during cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 81, 043809 (2010).
15. K. G. Köprülü, Y.-P. Huang, G. A. Barbosa, and P. Kumar, “Lossless single-photon shaping via heralding,” Opt. Lett. 36, 1674 (2011).
16. A. Kalachev and S. Kröll, “Coherent control of collective spontaneous emission in an extended atomic ensemble and quantum storage,” Phys. Rev. A 74, 023814 (2006).
17. A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen, “Photon storage in Λ-type optically dense atomic media,” Phys. Rev. A 76, 033804 (2007).
18. M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
19. A. Christ, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Pure single-photon generation by type-I PDC with backward-wave amplification,” Opt. Express 17, 3441 (2009).
20. C.-S. Chuu and S. E. Harris, “Ultrabright backward-wave biphoton source,” Phys. Rev. A 83, 061803 (2011).
21. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt. 41, 5040 (2002).
22. S. Emanueli and A. Arie, “Temperature-dependent dispersion equations for KTiOPO4 ,” Appl. Opt. 42, 6661 (2003).
23. M. E. Crenshaw, C. M. Bowden, and M. O. Scully, “Index enhancement and absorption compensation via quantum coherence control in multi-component media,” J. Mod. Opt. 50, 2551 (2003).
24. C. W. Thiel, T. Böttger, and R. L. Cone, “Rare-earth-doped materials for applications in quantum information storage and signal processing,” J. Lumin. 131, 353 (2011).
25. C. W. Thiel, Y. Sun, R. M. Macfarlane, T. Böttger, and R. L. Cone, “Rare-earth-doped LiNbO3 and KTiOPO4 (KTP) for waveguide quantum memories,” J. Phys. B 45, 124013 (2012).