ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.8, 535.015, 621.396

Optical-fiber system for forming the directional diagram of a broad-band phased-array receiving antenna, using wave-multiplexing technology and the chromatic dispersion of the fiber

For Russian citation (Opticheskii Zhurnal):

Иванов С.И., Лавров А.П., Саенко И.И. Оптоволоконная система формирования диаграммы направленности широкополосной приемной фазированной антенной решетки с использованием технологии волнового мультиплексирования и хроматической дисперсии волокна // Оптический журнал. 2015. Т. 82. № 3. С. 13–22.

 

Ivanov S.I., Lavrov A.P., Saenko I.I. Optical-fiber system for forming the directional diagram of a broad-band phased-array receiving antenna, using wave-multiplexing technology and the chromatic dispersion of the fiber [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 3. P. 13–22.

For citation (Journal of Optical Technology):

S. I. Ivanov, A. P. Lavrov, and I. I. Saenko, "Optical-fiber system for forming the directional diagram of a broad-band phased-array receiving antenna, using wave-multiplexing technology and the chromatic dispersion of the fiber," Journal of Optical Technology. 82(3), 139-146 (2015). https://doi.org/10.1364/JOT.82.000139

Abstract:

This paper discusses a diagram-forming system for a broad-band (instantaneous frequency band greater than 10 GHz) receiver antenna array. It is based on commercially available elements. The operation of the system is based on independently modulating the radiation of lasers (the number of lasers equals the number of antennas in the array) by received super-high-frequency signals, by wave multiplexing and subsequently directing the radiation of all the lasers into a single one-mode switchable-length fiber. The technique is presented, along with the results of a calculation of the main working characteristics of the system: the transfer response, the dynamic range, and the SNR. The results are discussed of experimental studies of a component of the system, consisting of an analog fiber-optic line to transmit super-high-frequency signals.

Keywords:

radio photonics, fiber-optic link, wave multiplexing, diagram forming system, time delays, phased-array receiving antenna, dynamic range, signal/noise ratio

OCIS codes: 060.2360, 060.5625, 070.1170, 280.5110

References:

1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319 (2007).
2. J. P. Yao, “A tutorial on microwave photonics—Part II,” IEEE Photon. Soc. Newsl. 26, No. 3, 5 (2012).
3. L. D. Bakhrakh and D. F. Zaı˘tsev, “Prospects of using analog photonics in radar systems,” Antenny Nos. 8–9, 134 (2004).
4. D. F. Zaı˘tsev, Nanophotonics and Its Application (Firma Akteon, Moscow, 2012).
5. N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased-Array Antennas (SPIE, Bellingham, Wash., 1997).
6. A. M. Levine, “Fiber optics for radar and data systems,” Proc. SPIE 0150, 185 (1978).
7. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395 (1992).
8. R. A. Minasian, K. E. Alameh, and N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, No. 2, 84 (1995).
9. A. K. Agrawal and E. L. Holzman, “Beamformer architectures for active phased-array radar antennas,” IEEE Trans. Antennas Propag. 4, 432 (1999).
10. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay unit for phased beam forming using discrete-chirped fiber grating prism,” Opt. Commun. 207, 177 (2002).
11. T. Akiyama, N. Takemura, H. Oh-Hahsi, S. Yamamoto, M. Sato, T. Nagatsuka, Y. Hirano, and S. Wadaka, “Fourier transform optical beam-former employing spatial light modulator,” IEICE Trans. Electron. E90-C, 465 (2007).
12. Y. Yang, Y. Dong, D. Liu, H. He, Y. Jin, and W. Hu, “A 7-bit photonic true-time-delay system based on an 8 × 8 MOEMS optical switch,” Chin. Opt. Lett. 7, No. 2, 118 (2009).
13. M. Tur, L. Yaron, R. Rotman, and O. Raz, “Photonic technologies for antenna beamforming,” in Proc. OFC/NFOEC, 2011, paper OThA6.
14. M. Burla, C. Roeloffzen, L. Zhuang, D. Marpaung, M. Rezaul Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased-array antenna employing an integrated photonic beamformer for radio-astronomy applications,” Appl. Opt. 51, 789 (2012).
15. S. I. Ivanov, A. P. Lavrov, and I. I. Saenko, “Diagram-forming systems of broad-band receiver PAAs with the use of the components of fiber-optic telecommunication systems,” in International Conference on Radioelectronic Devices and Systems for Information-Communication Technologies (REDS-2014) (RNTORES im. A. S. Popova, Moscow, 2014), No. 49, pp. 163–167.
16. N. M. Froberg, E. I. Ackerman, and C. Cox, “Analysis of signal-to-noise ratio in photonic beamformers,” in IEEE Aerospace Conference, 2006, paper 1067.
17. E. I. Ackerman and C. H. Cox, “Fiber-optic analog radio frequency links,” in Broadband Optical Modulators, ed. A. Chen and E. J. Murphy (CRC Press, Bellingham, Wash., 2012), pp. 63–92.
18. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981).
19. A. Ango, Mathematics for Electrical and Radio Engineers (Nauka, Moscow, 1965).
20. H. Brian, B. H. Kolner, and D. W. Dolfi, “Intermodulation distortion and compression in an integrated electrooptic modulator,” Appl. Opt. 26, 3676 (1987).
21. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, New York, 2008).
22. A. P. Lavrov, S. I. Ivanov, and I. I. Saenko, “Investigation of analog photonics-based broadband beamforming system for receiving antenna array,” Lect. Notes Comput. Sci. 8638, 647 (2014).
23. B. Razavi, RF Microelectronics (Prentice Hall, New York, 1998).

24. A. V. Ivanov, D. S. Isaev, V. D. Kurnosov, K. V. Kurnosov, V. A. Simakov, and R. V. Chernov, “Study of the noise characteristics and dynamic range of the unified set of POM-27 and PROM-15,” in Twenty-First International Crimean Conference on SHF Engineering and Telecommunication Tech-nology (KryMiKo): Materials of the Conference, Sevastopol’, 2011, pp. 357–358.
25. 18 GHz SCM Fiber Optic Link, Miteq, http://www.miteq.com/docs/MITEQ‑SCM_‑18G.PDF.
26. Hybrid laser module LDI-DFB-1550-20/80, LasersCom, http://www.laserscom.com/#!gibridnye‑moduli/cjep.
27. Intensity Modulator IM-1550-20-a, Optilab, http://www.optilab.com/images/datasheets/IM‑1550.pdf.