ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42

Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure

For Russian citation (Opticheskii Zhurnal):

Грейсух Г.И., Данилов В.А., Ежов Е.Г., Степанов С.А., Усиевич Б.А. Спектральная и угловая зависимости эффективности дифракционных линз с двухрельефной и двухслойной микроструктурой // Оптический журнал. 2015. Т. 82. № 5. С. 56–61.

 

Greisukh G.I., Danilov V.A., Ezhov E.G., Stepanov S.A., Usievich B.A. Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 5. P. 56–61.

For citation (Journal of Optical Technology):

G. I. Greĭsukh, E. G. Ezhov, S. A. Stepanov, V. A. Danilov, and B. A. Usievich, "Spectral and angular dependences of the efficiency of diffraction lenses with a dual-relief and two-layer microstructure," Journal of Optical Technology. 82(5), 308-311 (2015). https://doi.org/10.1364/JOT.82.000308

Abstract:

This paper presents the results of a comparison of the dependences of the efficiency of diffraction lenses that have a two-layer microstructure with internal and external reliefs on the wavelength and angle of incidence of the radiation. These dependences are obtained in the framework of scalar diffraction theory and by a method based on the solution of the system of Maxwell’s equations. The requirements on the microstructure are determined for which a diffraction lens as an element of an optical system designed to operate in the visible region has the highest diffraction efficiency.

Keywords:

diffraction efficiency, diffraction lens, relief-phase microstructure

Acknowledgements:

This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of the state program “Higher institution of learning in the sphere of scientific activity.”

OCIS codes: 050.0050

References:

1. L. R. Jennifer, M. K. Crawford, D. J. Fischer, C. J. Harkrider, D. T. Moore, and T. H. Tomkinson, “Design of three-element night-vision goggle objectives,” Appl. Opt. 37, 622 (1998).
2. H. Hua, Y. Ha, and J. P. Roland, “Design of an ultralight and compact projection lens,” Appl. Opt. 42, No. 1, 97 (2003).
3. G. V. Barmicheva and M. A. Gan, “Objective,” Russian Patent No. 2,258,247 (2005).
4. “Canon unveils EF 400 mm f/4 DO IS USM super telephoto lens,” http://www.ephotozine.com/article/canon‑unveil‑ef‑400mm‑f‑4‑do‑is‑usm‑super‑telephoto‑lens‑551.
5. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic microobjectives,” Appl. Opt. 49, 4379 (2010).
6. G. I. Greisukh, E. G. Ezhov, A. V. Kalashnikov, and S. A. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597 (2012).
7. G. I. Greisukh, E. G. Ezhov, Z. A. Sidyakina, and S. A. Stepanov, “Design of plastic diffractive-refractive compact zoom lenses for visible–near-IR spectrum,” Appl. Opt. 52, 5843 (2013).
8. Y. Arieli, S. Ozeri, and N. Eisenberg, “Design of a diffractive optical element for wide spectral bandwidth,” Opt. Lett. 23, 823 (1998).
9. G. I. Greı˘sukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two-layer phase-relief diffraction structures,” Opt. Spektrosk. 106, 694 (2009) [Opt. Spectrosc. 106, 621 (2009)].
10. Y. H. Zhao, C. J. Fan, C. F. Ying, and S. H. Liu, “The investigation of triple-layer diffraction optical element with wide field of view and high diffraction efficiency,” Opt. Commun. 295, 104 (2013).
11. D. A. Buralli, G. M. Morris, and J. R. Rogers, “Optical performance of holographic kinoforms,” Appl. Opt. 28, 976 (1989).
12. D. A. Pommet, M. G. Moharam, and E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827 (1994).
13. U. Levy, E. Marom, and D. Mendlovic, “Thin element approximation for the analysis of blazed gratings: simplified model and validity limits,” Opt. Commun. 229, 11 (2004).
14. J. Francés, S. Bleda, S. Gallego, C. Neipp, A. Márquez, I. Pascual, and A. Beléndez, “Accuracy analysis of simplified and rigorous numerical methods applied to binary nanopatterning gratings in non-paraxial domain,” Phys. Lett. A 377, 2245 (2013).
15. D. Ruan, L. Zhu, X. Jing, Y. Tian, L. Wang, and S. Jin, “Validity of scalar diffraction theory and effective medium theory for analysis of a blazed grating microstructure at oblique incidence,” Appl. Opt. 53, 2357 (2014).
16. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811 (1981).
17. N. M. Lyndin, “Modal and C methods grating design and analysis software,” http://www.mcgrating.com.
18. B. Kleemann, M. Seeßelberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” Eur. Opt. Soc. Rapid Publ. 3, 08015 (2008).
19. G. I. Greı˘sukh, E. G. Ezhov, and S. A. Stepanov, “Suppressing the wavelength dependence of the diffraction efficiency of two-order relief-phase diffraction structures,” Opt. Zh. 76, No. 2, 3 (2009) [J. Opt. Technol. 76, 55 (2009)].