ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 532.783, 535.771, 535.36

Spectral characteristics of tunable IR liquid-crystal filters based on the Christiansen effect

For Russian citation (Opticheskii Zhurnal):

Дик В.П., Лойко В.А. Спектральные характеристики инфракрасных перестраиваемых жидкокристаллических фильтров, основанных на эффекте Христиансена // Оптический журнал. 2015. Т. 82. № 9. С. 34–40.

 

Dik V.P., Loiko V.A. Spectral characteristics of tunable IR liquid-crystal filters based on the Christiansen effect [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 9. P. 34–40.

For citation (Journal of Optical Technology):

V. P. Dik and V. A. Loĭko, "Spectral characteristics of tunable IR liquid-crystal filters based on the Christiansen effect," Journal of Optical Technology. 82(9), 602-606 (2015). https://doi.org/10.1364/JOT.82.000602

Abstract:

This paper discusses electrically controllable IR dispersion filters based on a small-particles–liquid-crystal system. A calculational technique is presented, and the connection of the structural parameters of the filters and their spectral characteristics is analyzed, using as an example a system composed of aluminum oxide particles and the liquid crystal 4-methoxybenzylidene-4-butylaniline. It is shown that the transmission bandwidth is minimized under the following conditions: the particle size is a factor of 4–6 greater than the wavelength corresponding to the maximum transmittance of the filter; the volume concentration of particles lies in the interval 0.5–0.6; the ratio of the half-width of the distribution to the modal radius does not exceed 0.2; and the filter thickness is a factor of 15–20 greater than the mean particle size.

Keywords:

liquid crystals, light scattering, dispersion filters

Acknowledgements:

This work was carried out with the support of the Belarusan Republic Foundation for Basic Research.

OCIS codes: 230.3720, 160.3710

References:

1. T. D. Ibragimov and M. G. Bayramov, “Novel type of tunable infrared filters based on the Al2 O3 particles,” Infrared Phys. Technol. 55, No. 1, 56 (2012).
2. V. P. Dik and V. A. Loı˘ko, “Electrically controlled dispersion filters for the visible and mid-infrared regions,” J. Opt. Technol. 79, 403 (2012) [Opt. Zh. 79, No. 7, 29 (2012)].
3. V. P. Dik and A. P. Ivanov, “Limits of applicability of the interference approximation for description of extinction of light in disperse media with high concentration of particles,” Opt. Spectrosc. 86, 909 (1999) [Opt. Spektrosk. 86, 1010 (1999)].
4. V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer-dispersed liquid-crystal films,” Liq. Cryst. 28, 1193 (2001).
5. V. P. Dik and V. A. Loı˘ko, “Light attenuation by disperse layers with a high concentration of oriented anisotropic spherical particles,” Opt. Spectrosc. 91, 608 (2001) [Opt. Spektrosk. 91, 655 (2001)].
6. V. P. Dik and V. A. Loı˘ko, “Coherent transmittance of a polymer-dispersed liquid-crystal film in a strong field: effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595 (2003) [Opt. Spektrosk. 94, 650 (2003)]. 
7. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).
8. A. P. Ivanov, V. A. Loı˘ko, and V. P. Dik, Distribution of Light in Close-Packed Disperse Media (Nauka i Tekhnika, Minsk, 1988).
9. A. A. Miskevich and V. A. Loiko, “Coherent transmission and reflection of a two-dimensional planar photonic crystal,” J. Exp. Theor. Phys. 113, 1 (2011).
10. S. Fraden, “Multiple light scattering from concentrated, interacting suspensions,” Phys. Rev. Lett. 65, 512 (1990).
11. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
12. A. Ishimaru, Wave Propagation and Scattering in Random Media: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing (Academic, New York, 1978; Mir, Moscow, 1981).
13. K. S. Shifrin, “On the calculation of microstructure,” Trudy GGO No. 109, 168 (1961).
14. V. Ya. Zyryanov, zyr@iph.krasn.ru. Partial report.
15. http://refractiveindex.info/?group=CRYSTALS\&material=Al2O3.
16. M. Kleman and O. D. Lavrentovich, Soft Matter Physics. An Introduction (Springer, New York, 2003; Fizmatlit, Moscow, 2007), Chap. 3, pp. 101–120.
17. V. A. Loı˘ko, U. Mashke, V. Ya. Zyryanov, A. V. Konkolovich, and A. A. Miskevich, “Angular structure of radiation scattered by monolayer of polydisperse droplets of nematic liquid crystal,” Opt. Spectrosc. 110, 110 (2011) [Opt. Spektrosk. 110, 116 (2011)].
18. V. A. Loiko, A. A. Miskevich, and A. V. Konkolovich, “Order parameter of elongated liquid crystal droplets: the method of retrieval by the coherent transmittance data,” Phys. Rev. E 74, 031704 (2006).
19. V. A. Loiko, A. V. Konkolovich, and A. A. Miskevich, “Retrieval of order parameters of a monolayer of liquid-crystal droplets with weak anchoring,” J. Exp. Theor. Phys. 105, 846 (2007).