ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Polyaniline nanoparticles: potential optical coherence tomography contrast agents

For Russian citation (Opticheskii Zhurnal):

Jianfeng Yu, Zhiming Liu, Xinpeng Wang, Mei Jin, Haolin Chen, Zhouyi Guo Polyaniline nanoparticles: potential optical coherence tomography contrast agents [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 9. С. 82–89.

 

Jianfeng Yu, Zhiming Liu, Xinpeng Wang, Mei Jin, Haolin Chen, Zhouyi Guo Polyaniline nanoparticles: potential optical coherence tomography contrast agents [in English] // Opticheskii Zhurnal. 2015. V. 82. № 9. P. 82–89.

For citation (Journal of Optical Technology):

Jianfeng Yu, Zhiming Liu, Xinpeng Wang, Mei Jin, Haolin Chen, and Zhouyi Guo, "Polyaniline nanoparticles: potential optical coherence tomography contrast agents," Journal of Optical Technology. 82(9), 639-645 (2015). https://doi.org/10.1364/JOT.82.000639

Abstract:

Polyaniline, an organic conducting polymer, exhibits strong light absorption in the near-infrared region. Herein, the potential of polyaniline nanoparticles as the contrast agents for optical coherence tomography imaging was investigated. Polyaniline nanoparticles were synthesized by a facile chemical oxidative method. The optical coherence tomography images obtained from ex vivo swine liver tissues showed the concentration-dependent contrast effect of polyaniline nanoparticles. Then the nanoagents were applied to in vivo optical coherence tomography imaging of tumor tissues using a xenograft tumor mouse model. The penetration depth of the optical coherence tomography signals from tumors injected with polyaniline nanoparticles was significantly lower than that from tumors injected with phosphate buffer solution. The remarkable contrast effect of polyaniline nanoparticles was then quantitatively studied by the attenuation coefficients of optical coherence tomography signals. Furthermore, the permeation dynamics of polyaniline nanoparticles in tissue was also studied by Raman spectroscopy.

Keywords:

polyaniline nanoparticle, optical coherence tomography, Raman spectroscopy

Acknowledgements:

This work was supported by the National Natural Science Foundation of China (No. 61275187; No. 61335011; No.11404116 and No. 31300691), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20114407110001 and No. 20134407120003), the Science and Technology Project of Guangdong Province (No. 2012A080203008), the Science and Technology Innovation Project of the Education Department of Guangdong Province (No. 2013KJCX0052), and the Scientific Research Cultivation Fund for Young Teachers of South China Normal University (No. 14KJ10).

OCIS codes: 160.4890, 170.1650

References:

1. Podoleanu A.G. Optical coherence tomography // J. Microsc. 2012. V. 247. No 3. P. 209–219.
2. Huang D., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., and Puliafito C.A. Optical coherence tomography // Science 1991. V. 254. No 5035. P. 1178–1181.
3. Li J., Chen B., Du Y., Yang L., Xia Y., He Y., Liu S., and Chen C. Quantitative measurement of optical parameters of cell lines 5-8F and 6-10B using polarization sensitive optical coherence tomography // Arch. Biochem. Biophys. 2012. V. 522. No 2. P. 125–129.
4. Jaffe G.J. and Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma // Am. J. Ophthalmol. 2004. V. 137. No 1. P. 156–169.
5. D’Alessandro A., Cervia D., Catalani E., Gevi F., Zolla L., and Casini G. Protective effects of theneuropeptides PACAP, substance P and the somatostatin analogue octreotide in retinal ischemia: ametabolomic analysis // Mol. Biosyst. 2014. V. 10. No 6. P. 1290–1304.
6. Stehouwer M., Tan S.H., van Leeuwen T.G., and Verbraak F.D. Senile retinoschisis versus retinaldetachment, the additional value of peripheral retinal OCT scans (SL SCAN-1, Top-con) // Acta. Ophthalmol. 2014. V. 92. No 3. P. 221–227.
7. Wittstrom E., Nordling M., and Andreasson S. Genotype-phenotype correlations, and retinal function and structure in von Hippel–Lindau disease // Ophthalmic. Genet. 2014. V. 35. No 2. P. 91–106.
8. Vakoc B.J., Fukumura D., Jain R.K., and Bouma B.E. Cancer imaging by optical coherence tomography: preclinical progress and clinical potential // Nat. Rev. Cancer 2012. V. 12. No 5. P. 363–368.
9. Park B.H., Saxer C., de Boer J.F., Srinivas S.M., and Nelson J.S. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography // J. Biomed. Opt. 2001. V. 6. No 4. P. 474–479.
10. Zhou X.M., Sun J.B., Yuan H.P., Wu D.L., Zhou X.R., Sun D.W., Li H.Y., Shao Z.B., and Zhang Z.R. A rat model for studying neural stem cell transplantation // Acta Pharmacol. Sin. 2009. V. 30. No 11. P. 1496–1504.
11. Boppart S.A., Oldenburg A.L., Xu C., and Marks D.L. Optical probes and techniques for contrast enhancement in coherence imaging // J. Biomed. Opt. 2005. V. 10. No 4. P. 041208–041214.
12. Zagaynova E., Shirmanova M., Kirillin M.Y., Khlebtsov B., Orlova A., Balalaeva I., Sirotkina M., Bugrova M., Agrba P., and Kamensky V. Contrasting properties of gold nanoparticles for opticalcoherence tomography: phantom, in vivo studies and Monte-Carlo simulation// Phys. Med. Biol. 2008. V. 53. No 18. P. 4995.
13. Lin A., Hirsch L., Lee M.H., Barton J., Halas N., West J., and Drezek R. Nanoshell-enabled photonics-based imaging and therapy of cancer // Technol. Cancer Res. T. 2004. V. 3. No 1. P. 33–40.
14. Tong L., Wei Q., Wei A., and Cheng J.X. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects // Photochem. Photobiol. 2009. V. 85. No 1. P. 21–32.
15. Chen J., Saeki F., Wiley B.J., Cang H., Cobb M.J., Li Z.Y., Au L., Zhang H., Kimmey M.B., and Li X. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents // Nano Lett. 2005. V. 5. No 3. P. 473–477.
16. Yang C., McGuckin L.E., Simon J.D., Choma M.A., Applegate B.E., and Izatt J.A. Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent // Opt. Lett. 2004. V. 29. No 17. P. 2016–2018.
17. 17. Au K.M., Lu Z., Matcher S.J., and Armes S.P. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging // Adv. Mater. 2011. V. 23. No 48. P. 5792–5795.

18. Shirakawa H., Louis E.J., MacDiarmid A.G., Chiang C.K., and Heeger A.J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x // J. Chem. Soc., Chem. Commun. 1977. No 16. P. 578–580.
19. Jaymand M. Recent progress in chemical modification of polyaniline // Prog. Polym. Sci. 2013. V. 38. No 9. P. 1287–1306.
20. Syed A.A. and Dinesan M.K. Review: polyaniline – a novel polymeric material // Talanta. 1991. V. 38. No 8. P. 815–837.
21. Ryu K.S., Kim K.M., Park N.G., Park Y.J., and Chang S.H. Symmetric redox supercarpacitor with conducting polyaniline electrodes // J. Power Sources 2002. V. 103. No 2. P. 305–309.
22. Wei X., Jiao L., Sun J., Liu S., and Yuan H. Synthesis, electrochemical, and gas sensitivity performance of polyaniline/MoO3 hybrid materials // J. Solid State Electr. 2010. V. 14. No 2. P. 197–202.
23. Kim S.G., Lim J.Y., Sung J.H., Choi H.J., and Seo Y. Emulsion polymerized polyaniline synthesizedwith dodecylbenzene-sulfonic acid and its electrorheological characteristics: temperature effect // Polymer. 2007. V. 48. No 22. P. 6622–6631.
24. Niziol J., Sniechowski M., Podraza-Guba A., and Pielichowski J. Alternative oxidizers in polyaniline synthesis // Polym. Bull. 2011. V. 66. No 6. P. 761–770.
25. Kawashima H. and Goto H. Preparation and properties of polyaniline in the presence of trehalose // Soft Nanoscience Letters. 2011. No 1. P. 71.
26. Wang Y., Tran H.D., Liao L., Duan X., and Kaner R.B. Nanoscale morphology, dimensional control, and electrical properties of oligoanilines // J. Am. Chem. Soc. 2010. V. 132. No 30. P. 10365–10373.
27. Li Y.S., Chen B.F., Li X.J., Zhang W.K., and Tang H.B. Cytotoxicity of polyaniline nanomaterial on rat celiac macrophages in vitro // PloS one. 2014. V. 9. No 9. P. e107361.
28. Zhou J., Lu Z., Zhu X., Wang X., Liao Y., Ma Z., and Li F. NIR photothermal therapy using polyaniline nanoparticles // Biomaterials 2013. V. 34. No 37. P. 9584–9592.
29. Yang J., Choi J., Bang D., Kim E., Lim E.K., Park H., Suh J.S., Lee K., Yoo K.H., and Kim E.K. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells // Angew. Chem. 2011. V. 123. No 2. P. 461–464.
30. Cao Y.C., Jin R., and Mirkin C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection // Science. 2002. V. 297. No 5586. P. 1536–1540.
31. Alves K.G.B., Melo E.F., Andrade C.A.S., and Melo C.P. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions // J. Nanopart. Res. 2012. V. 15. No 1. P. 1–11.
32. Knu A. and Boehlau-Godau M. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography // J. Biomed. Opt. 2000. V. 5. No 1. P. 83–92.
33. Larraona-Puy M., Perkins W., Leach I.H., Koloydenko A.A., Williams H., Notingher I., Varma S., Ghita A., and Zoladek A. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma // J. Biomed. Opt. 2009. V. 14. No 5. P. 054031–054010.
34. Short M.A., Lam S., McWilliams A., Zhao J., Lui H., and Zeng H. Development and preliminary results of an endoscopic Raman probe for potential in vivo diagnosis of lung cancers // Opt. Lett. 2008. V. 33. No 7. P. 711–713.
35. Lieber C.A., Majumder S.K., Billheimer D., Ellis D.L., and Mahadevan-Jansen A. Raman microspectroscopy for skin cancer detection in vitro // J. Biomed. Opt. 2008. V. 13. No 2. P. 024013–024019.
36. Huang D., Zhang W., Zhong H., Xiong H., Guo X., and Guo Z. Optical clearing of porcine skin tissue in vitro studied by Raman microspectroscopy // J. Biomed. Opt. 2012. V. 17. No 1. P. 0150041–0150048.
37. Zhao J., Lui H., McLean D.I., and Zeng H. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy // Appl. Spectrosc. 2007. V. 61. No 11. P. 1225–1232.
38. Perrault S.D., Walkey C., Jennings T., Fischer H.C., and Chan W.C. Mediating tumor targeting efficiency of nanoparticles through design // Nano Lett. 2009. V. 9. No 5. P. 1909–1915.
39. Liu Z., Zhu Y., Wang L., Ding C., Wang N., Wan M., and Jiang L. Polyaniline microtubes with a hexagonal crosssection and PH-sensitive fluorescence properties // Macromol. Rapid Comm. 2011. V. 32. No 6. P. 512–517.
40. Izumi C.M., Andrade G.F., and Temperini M.L. Surface-enhanced resonance Raman scattering of polyaniline on silver and gold colloids // J. Phys. Chem. B 2008. V. 112. No 51. P. 16334–16340.
41. Wang X., Shen Y., Xie A., Li S., Cai Y., Wang Y., and Shu H. Assembly of dandelion-like Au/PANI nanocomposites and their application as SERS nanosensors // Biosens. Bioelectron. 2011. V. 26. No 6. P. 3063–3067.