ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

Out-of-band correction technologies for the multispectral image of Mapping Satellite-1 by using EO-1 Hyperion data

For Russian citation (Opticheskii Zhurnal):

Tao Sun, Li Huang, Hui Long, Bao-Cheng Liu Out-of-band correction technologies for the multispectral image of Mapping Satellite-1 by using EO-1 Hyperion data (Технологии внеполосной коррекции многоспектральных изображений, полученных со спутника MS-1 (Китай) с использованием спутниковых данных спектрометра Гиперион (США)) [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 10. С. 66–73.

 

Tao Sun, Li Huang, Hui Long, Bao-Cheng Liu Out-of-band correction technologies for the multispectral image of Mapping Satellite-1 by using EO-1 Hyperion data (Технологии внеполосной коррекции многоспектральных изображений, полученных со спутника MS-1 (Китай) с использованием спутниковых данных спектрометра Гиперион (США)) [in English] // Opticheskii Zhurnal. 2016. V. 83. № 10. P. 66–73.

For citation (Journal of Optical Technology):

Tao Sun, Li Huang, Hui Long, and Bao-Cheng Liu, "Out-of-band correction technologies for the multispectral image of Mapping Satellite-1 by using EO-1 Hyperion data," Journal of Optical Technology. 83(10), 632-637 (2016). https://doi.org/10.1364/JOT.83.000632

Abstract:

A general method using intercalibration methodology and linear regression theory for correcting out-of-band (OOB) effects is proposed and applied for Chinese Mapping Satellite-1 (MS-1) to improve the radiometric quality of multispectral sensors. The correction coefficients for a particular broad band are conducted by the linear regression between simulation-corrected radiances and measured digital numbers. The simulation-corrected radiances are obtained by convolving referenced narrow-hyperspectral spectrum radiances with the spectral response function provided by the instrument vendor. An assumption wherein the relationship of in-band and OOB radiances has an extremely linear characteristic if in-band radiances are slightly greater than OOB radiances is proposed and then verified by experiments. The correction coefficients of OOB effects for four bands of the MS-1 multispectral sensor are presented by using hyperspectral data from EO-1 Hyperion. Positive results are achieved for the corrected images.

Keywords:

Multispectral sensors, Out-of-band effects, Out-of-band correction, Spectral response function, Hyperion data

Acknowledgements:

The authors thank the editors and the reviewers for their constructive and helpful comments for substantial improvement of paper. The authors thank the TH-Centre of China for providing experimental images and the SRF of multispectral sensor. This research is financially supported by the State Key Program of National Natural Science Foundation of China (Grant No.61331017).

OCIS codes: 280.0280

References:

1. Chen W., Lucke R. Out-of-band correction for multispectral remote sensing // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(4). P. 2476–2483.
2. Gordon H.R. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response // Applied Optics. 1995. V. 34(36). P. 8363–8374.
3. Barnes R.A., Holmes A.W., Barnes W.L., Esaias W.E., Svitek T. SeaWiFS prelaunch radiometric calibration and spectral characterization // NASA, Goddard Space Flight Center, Greenbelt, MD, NASA Tech. Memo. 104566. 1995.
4. Patt F.S., Barnes R.A., Eplee R.E., Franz B.A., Robinson W.D., Feldman G.C., Bailey S.W., Gales J., Werdell P.J., Wang M., Frouin R., Stumpf R.P., Arnone R.A., Gould J.R.W., Martinolich P.M., Ransibrahmanakul V., O’Reilly J.E., Yoder J.A. Algorithm updates for the fourth seaWiFS data reprocessing // NASA, Goddard Space Flight Center, Greenbelt, MD, NASA Tech. Memo. 206892. 2003. V. 22.

5. Barnes W.L., Pagano T.S., Salomonson V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM 1 // IEEE Trans. Geosci. Remote Sens. 1998. V. 36(4). P. 1088–1100.
6. Pandya M.R., Singh R.P., Murali K.R., Babu P.N., Kirankumar A.S., Dadhwal V.K. Bandpass solar exoatmospheric irradiance and rayleigh optical thickness of sensors onboard indian remote sensing satellites-1B, -1C, -1D, and P4 // IEEE Trans. Geosci. Remote Sens. 2002. V. 40(3). P. 714–718.
7. Goldberg M., Ohring G., Butler J., Cao C., Datla R., Doelling D., Gärtner V., Hewison T., Iacovazzi B., Kim D., Kurino T., Lafeuille J., Minnis P., Renaut D., Schmetz J., Tobin D., Wang L., Weng F., Wu X., Yu F., Zhang P., Zhu T. The global space-based intercalibration system // Bulletin of the American Meteorological Society. 2011. V. 92(4). P. 467–475.
8. Hewison T.J., Wu X., Yu F., Tahara Y., Hu X., Kim D., Koenig M. GSICS intercalibration of infrared channels of geostationary imagers using Metop/IASI // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(3). P. 1160–1170.
9. Yu F., Wu X. Radiometric calibration accuracy of GOES sounder infrared channels // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(3). P. 1187–1199.
10. Yu F., Wu X., Goldberg M. Recent operational status of GSICS GEO-LEO and GEO-GEO intercalibrations at NOAA/NESDIS // Geoscience and Remote Sensing Symposium (IGARSS) 2011. IEEE International. 2011. P. 989–992.
11. Zhang Y., Gunshor M.M. Intercalibration of FY-2C/D/E infrared channels using AIRS // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(3). P. 1231–1244.
12. Hewison T., Muller J. Ice contamination of Meteosat / SEVIRI IR13. 4 channel implied by Intercalibration against Metop / IASI // Geoscience and Remote Sensing Symposium (IGARSS) 2012. IEEE International. 2012. P. 7197–7199.
13. Pearlman J.S., Barry P.S., Segal C.C., Shepanski J., Beiso D., Carman S.L. Hyperion, a space-based imaging spectrometer // IEEE Trans. Geosci. Remote Sens. 2003. V. 41(6). P. 1160–1173.
14. Wu X., Yu F. Correction for GOES imager spectral response function using GSICS. Part I: Theory // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(3). P. 1215–1223.
15. Yu F., Wu X. Correction for GOES Imager Spectral Response Function Using GSICS. Part II: Applications // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(3). P. 1200–1214.
16. Hewison T. Temporal and spatial variability in Meteosat / SEVIRI images for the Global Space-based Intercalibration System (GSICS) // Geoscience and Remote Sensing Symposium (IGARSS) 2012. IEEE International. 2012. P. 3529–3531.
17. Hu X., Xu N., Weng F., Zhang Y., Chen L., Zhang P. Long-term monitoring and correction of FY-2 infrared channel calibration using AIRS and IASI // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(10). P. 5008–5018.
18. Hewison T. An evaluation of the uncertainty of the GSICS SEVIRI-IASI intercalibration products // IEEE Trans. Geosci. Remote Sens. 2013. V. 51(3–1). P. 1171–1181.
19. Kruse F.A., Boardman J.W., Huntington J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping // IEEE Trans. Geosci. Remote Sens. 2003. V. 41(6). P. 1388–1400.
20. Jarecke P., Yokoyama K. Radiometric calibration of the Hyperion imaging spectrometer instrument from primary standards to end-to-end calibration // Proc. of SPIE. 2000. V. 4135. P. 254–263.
21. Kieffer H.H., Jarecke P.J., Pearlman J. Initial lunar calibration observations by the EO-1 Hyperion imaging spectrometer // International Symposium on Optical Science and Technology. International Society for Optics and Photonics. 2002. P. 247–258.
22. Jarecke P.J., Yokoyama K.E., Barry P. On-orbit solar radiometric calibration of the Hyperion instrument // International Symposium on Optical Science and Technology. International Society for Optics and Photonics. 2002. P. 225–230.
23. Barry P., Shepanski J., Segal C. Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system // International Symposium on Optical Science and Technology. International Society for Optics and Photonics. 2002. P. 231–235.
24. Yoshihiko T. New approach to intercalibration using high spectral resolution sounder // Meteorological Satellite Center Technical Note. 2008. V. 50. P. 1–14.
25. Tahara Y., Kato K. New spectral compensation method for intercalibration using high spectral resolution sounder // Meteorological Satellite Center Technical Note. 2009. V. 52. P. 1–37.