ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.016, 535.15, 535.041.08

Optical and photoluminescence properties of ytterbium-doped porous silicon subjected to laser-stimulated oxidation

For Russian citation (Opticheskii Zhurnal):

Григорьев Л.В., Михайлов А.В. Оптические и фотолюминесцентные свойства пористого кремния, легированного иттербием при лазерно-стимулированном окислении // Оптический журнал. 2016. Т. 83. № 12. С. 98–106.

 

Grigoriev L.V., Mikhailov A.V. Optical and photoluminescence properties of ytterbium-doped porous silicon subjected to laser-stimulated oxidation [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 12. P. 98–106.

For citation (Journal of Optical Technology):

L. V. Grigor’ev and A. V. Mikhaĭlov, "Optical and photoluminescence properties of ytterbium-doped porous silicon subjected to laser-stimulated oxidation," Journal of Optical Technology. 83(12), 787-793 (2016). https://doi.org/10.1364/JOT.83.000787

Abstract:

This paper describes the results of creating a silicon composite doped with ytterbium ions, based on the process of laser-stimulated oxidation of a layer of porous silicon that contains ytterbium nitrate. It presents studies of the transmission spectra and photoluminescence spectra of a layer of ytterbium-ion-doped oxidized porous silicon. The transmission spectra show that the layer of porous silicon is oxidized when the laser acts on the surface of the porous silicon. The photoluminescence spectra demonstrate that ytterbium ions are present in the Yb3+ state. Results are presented of a study of the thermally activated conduction currents of the original porous silicon, of laser-oxidized porous silicon, and of a layer obtained by laser-stimulated oxidation of porous silicon that contains ytterbium nitrate. A comparative study is done of the transformation of the energy spectrum of traps, carried out in the process of laser-stimulated oxidation of a layer of porous silicon in the presence of ions of the rare-earth elements.

Keywords:

laser oxidized porous silicon, silicon composit, photoluminescence, laser-stimulated oxidation, transmission spectrum, thermally activated spectroscopy, thermally stimulated conductivity

Acknowledgements:

The research was supported by the Russian Scientific Fund (14-23-00136).

OCIS codes: 250.0250, 300.0300, 310.0310, 160.0160

References:

1. I. H. Ray, Y. Lefevre, S. A. Schulz, N. Vermaulen, and T. E. Krauss, “Scaling of Raman amplification in realistic slow-light photonic crystal waveguides,” Phys. Rev. B 84(3), 035306 (2011).
2. I. A. Bufetov, S. L. Semenov, A. F. Kosolapov, M. A. Mel’kumov, and E. D. Dianov, “Ytterbium fibre laser with a heavily Yb 3+ -doped glass fibre core,” Quantum Electron. 36(3), 189–191 (2006) [Kvant. Elektron. (Moscow) 36(3), 189–191 (2006)].
3. A. S. Kurkov and E. M. Dianov, “Moderate-power cw fibre lasers,” Quantum Electron. 34(10), 881–900 (2004) [Kvant. Elektron. (Moscow) 34(10), 881–900 (2004)].
4. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, “Optical properties of porous-system-based nanocomposites,” Phys.-Usp. 50, 595–612 (2007) [Usp. Fiz. Nauk 177(6), 619–638 (2007)].
5. L. V. Grigor’ev, P. P. Konorov, and A. V. Mikhaı˘lov, “Selective absorption in thermally oxidized nanoporous silicon,” J. Opt. Technol. 79, 99–101 (2012) [Opt. Zh. 79(2), 54–58 (2012)].
6. S. Kuck, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).
7. I. A. Bufetov, M. A. Mel’kumov, K. S. Kravtsov, E. D. Dianov, and A. V. Shubin, “Lasing parameters of ytterbium-doped fibres doped with P2 O 5 and Al 2 O 3 ,” Quantum Electron. 34(9), 843–848 (2004) [Kvant. Elektron. (Moscow) 34(9), 843–848 (2004)].
8. A. A. Rybalovskiı˘, S. S. Aleshkina, M. A. Likhachev, M. M. Bubnov, A. A. Umnikov, M. V. Yashkov, A. N. Gur’yanov, and E. M. Dianov, “Luminescence and photoinduced absorption in ytterbium-doped optical fibres,” Quantum Electron. 41(12), 1073–1079 (2011) [Kvant. Elektron. (Moscow) 41(12), 1073–1079 (2011)].
9. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon-based optoelectronics,” Surf. Sci. Rep. 38(1–3), 1–126 (2000).
10. L. V. Grigor’ev and A. V. Mikhaı˘lov, “Investigating the energy spectrum of silicon nanoclusters in a silicon dioxide matrix,” J. Opt. Technol. 81(10), 616–620 (2014) [Opt. Zh. 81(10), 77–82 (2014).
11. L. V. Grigor’ev and A. V. Mikhaı˘lov, “Photoluminescence in oxidized nanoporous silicon doped with erbium ions,” J. Opt. Technol. 82(2), 127–130 (2015) [Opt. Zh. 82(2), 90–96 (2015)].
12. S. M. Zharkiı˘, A. A. Karabutov, I. M. Pelivanov, N. M. Podymova, and V. Yu. Timoshenko, “Laser ultrasonic study of porous silicon layers,” Semiconductors 37(4), 468–472 (2003) [Fiz. Tekh. Poluprovodn. 37(4), 485–489 (2003)].
13. S. K. Lazaruk, A. V. Dolbik, V. A. Labunov, and V. Borisenko, “Combustion and explosion of nanostructured silicon in microsystem devices,” Fiz. Tekh. Poluprovodn. 41(9), 1130–1132 (2007) [Semiconductors 41(9), 1113–1116 (2007)].
14. V. P. Pryanishnikov, The Silicone System (Izd. Lit. Stroitel’stvu, Leningrad, 1971).
15. S. A. Gavrilov, Electrochemical Processes in Micro- and Nanoelectronics (Vysshie Obrazovanie, Moscow, 2009).
16. A. N. Lazarev, A. P. Mirgorodskiı˘, and I. S. Ignat’ev, Vibrational Spectra of Complex Oxides, Silicates, and Their Analogues (Nauka, Leningrad, 1975).
17. L. V. Grigor’ev, I. M. Grigor’ev, M. V. Zamoryanskaya, V. I. Sokolov, and L. M. Sorokin, “Transport properties of thermally oxidized porous silicon,” Tech. Phys. Lett. 32(9), 750–753 (2006) [Pis’ma Zh. Tekh. Fiz. 32(17), 33–41 (2006)].