ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.243.2, 539.23

Optical study of wedge-shaped films. Part I. Modeling

For Russian citation (Opticheskii Zhurnal):

Шаяпов В.Р., Аюпов Б.М. Исследование клиновидных пленок оптическими методами. Часть I. Моделирование // Оптический журнал. 2016. Т. 83. № 7. С. 68–75.

 

Shayapov V.R., Ayupov B.M. Optical study of wedge-shaped films. Part I. Modeling [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 7. P. 68–75.

For citation (Journal of Optical Technology):

V. R. Shayapov and B. M. Ayupov, "Optical study of wedge-shaped films. Part I. Modeling," Journal of Optical Technology. 83(7), 441-446 (2016). https://doi.org/10.1364/JOT.83.000441

Abstract:

This paper, which is being published in two parts, provides a summary and analysis of the various effects that occur in ellipsometry and reflection spectroscopy studies of wedge-shaped thin films. In the first part of the paper, we calculate various optical characteristics of wedge-shaped films on substrates: the reflection coefficients and the spatial distribution of the light intensity entering a null-ellipsometer detector. We discuss whether existing theoretical approaches can be used in the study of wedge-shaped films and examine specific issues that arise when using null ellipsometry to determine the ellipsometric parameters (ψ and Δ) of such films. Part II of this paper will describe the results obtained through an experimental study of wedge-shaped films.

Keywords:

films, wedgeness, ellipsometry, reflection spectra

Acknowledgements:

This work was performed under a Russian Government contract with the Institute for Inorganic Chemistry (Siberian Department, Russian Academy of Sciences).

OCIS codes: 240.0310, 240.2130, 240.6490, 310.6860

References:

1. H. Huppertz and W. Engl, “Modeling of low-pressure deposition of SiO2 by decomposition of TEOS,” IEEE Trans. Electron Devices 26(4), 658–662 (1979).
2. C. S. Kim and É. Putilin, “Forming the thickness of layers with a variable profile,” J. Opt. Technol. 65(10), 843–846 (1998) [Opt. Zh. 65(10), 108–112 (1998)].
3. S. Swann, “Film thickness distribution in magnetron sputtering,” Vacuum 38(8–10), 791–794 (1988).
4. P. Boldyrevskii, A. Korovin, S. Denisov, S. Svetlov, and V. Shengurov, “Thickness uniformity of silicon layers grown from a sublimation source by molecular-beam epitaxy,” Tech. Phys. 59, 1732–1735 (2014) [Zh. Tekh. Fiz. 84(11), 115-158 (2014)].
5. J. H. Han, L. Nyns, A. Delabie, A. Franquet, S. Van Elshocht, and C. Adelmann, “Reaction chemistry during the atomic layer deposition of Sc2 O3 and Gd2 O3 from Sc(MeCp)3, Gd(iPrCp)3 , and H2 O,” Chem. Mater. 26, 1404–1412 (2014).
6. K.-E. Elers, T. Blomberg, M. Peussa, B. Aitchison, S. Haukka, and S. Marcus, “Film uniformity in atomic layer deposition,” Chem. Vap. Deposition 12, 13–24 (2006).
7. R. Xing, T. Ye, Y. Ding, Z. Ding, D. Ma, and Y. Han, “Thickness uniformity adjustment of inkjet printed light-emitting polymer films by solvent mixture,” Chin. J. Chem. 31, 1449–1454 (2013).
8. K. Katayama, K. Nakahata, M. Yoshizumi, T. Izumi, and Y. Shiohara, “Improvement of film thickness uniformity in TFA-MOD coated conductors,” Phys. Procedia 45, 157–160 (2013).
9. C. Jiang, J. Zhu, J. Han, P. Lei, and X. Yin, “Uniform film in large areas deposited by magnetron sputtering with a small target,” Surf. Coat. Technol. 229, 222–225 (2013).
10. V. Filippov and V. Kutavichus, “Account for the wedgeness and inhomogeneity of thin layers in the inverse problem of spectrophotometry on reflection,” Opt. Spectrosc. 92, 465–472 (2002) [Opt. Spektrosk. 92(3), 510–517 (2002)].
11. T. Pisarkiewicz, “Reflection spectrum for a thin film with non-uniform thickness,” J. Phys. D: Appl. Phys. 27, 160 (1994).
12. R. Grigorovici, T. Stoica, and A. Vancu, “Evaluation of the optical constants and thicknesses of weakly absorbing non-uniform thin films,” Thin Solid Films 97, 173–185 (1982).
13. K. Aly, “Optical properties of Ge–Se–Te wedge-shaped films by using only transmission spectra,” J. Non-Cryst. Solids 355, 1489–1495 (2009).
14. E. Shaaban, “Calculation of optical constant of amorphous germanium arsenoselenide wedge-shaped thin films from their shrunk transmittance and reflectance spectra,” Philos. Mag. 88(5), 781–794 (2008).
15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, 1965; Moscow, Nauka, 1973).
16. L. Cescato and J. Frejlich, “Roughness evaluation for thin films,” Appl. Opt. 18, 1486–1487 (1979).
17. B. M. Ayupov, I. A. Zarubin, V. A. Labusov, V. S. Sulyaeva, and V. R. Shayapov, “Searching for the starting approximation when solving inverse problems in ellipsometry and spectrophotometry,” J. Opt. Technol. 78, 350–354 (2011) [Opt. Zh. 78(6), 3–9 (2011)].
18. D. Bilenko, A. Sagaidachnyi, V. Galushka, and V. Polyanskaya, “Determination of optical properties and thickness of nanolayers from the angular dependences of reflectance,” Tech. Phys. 55, 1478–1483 (2010) [Zh. Tekh. Fiz. 80(10), 89-94 (2010)].
19. A. V. Rzhanov, K. K. Svitashev, A. I. Semenenko, L. I. Semenenko, and V. K. Sokolov, Fundamentals of Ellipsometry (Nauka, Novosibirsk, 1979).