УДК: 681.7.068.2, 681.7.063
Photorefractivity of germanosilicate light guides
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ероньян М.А., Тер-Нерсесянц Е.В., Комаров А.В., Безбородкин П.В., Мешковский И.К., Варжель С.В., Цибиногина М.К., Щеглов А.А. Фоторефракция германосиликатных световодов // Оптический журнал. 2017. Т. 84. № 10. С. 61–63.
Eroniyan M.A., Ter-Nersesyants E.V., Komarov A.V., Bezborodkin P.V., Meshkovskiy I.K., Varzhel S.V., Tsibinogina M.K., Shcheglov A.A. Photorefractivity of germanosilicate light guides [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 61–63.
M. A. Eron’yan, E. V. Ter-Nersesyants, A. V. Komarov, P. V. Bezborodkin, I. K. Meshkovskiĭ, S. V. Varzhel’, M. K. Tsibinogina, and A. A. Shcheglov, "Photorefractivity of germanosilicate light guides," Journal of Optical Technology. 84(10), 698-700 (2017). https://doi.org/10.1364/JOT.84.000698
In the fabrication of single-mode germanosilicate light guides, we studied how a reducing atmosphere in the high-temperature compression process of fiber preforms in a modified chemical vapor deposition process affects the photorefractive properties of the light guides. The results indicate an increase in photorefractivity and a decrease in the fiber drawing temperature with additional doping of the core of the light guide with fluorine.
photorefractivity, photosensitivity, germanosilicate light guides, fluorine doping, modified chemical vapor deposition process (MCVD)
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (RFMEFI-57816X0202, 14.578.21.0202).
OCIS codes: 060.2270, 060.2280, 060.2370, 060.3738
References:1. S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron. 18, 459–476 (1982).
2. E. M. Dianov, K. M. Golant, R. R. Khrapko, A. S. Kurkov, B. Leconte, M. Douay, P. Bernage, and P. Niay, “Grating formation in a germanium free silicon oxynitride fibre,” Electron. Lett. 33, 236–238 (1997).
3. L. G. Levit, M. A. Eron’yan, and Yu. N. Kondratiev, “Fabrication of quartz glass doped with nitrogen by the MCVD,” Fiz. Khim. Stekla 26(5), 729–735 (2000).
4. L. Dong, J. Pinkstone, P. St. J. Russell, and D. N. Payne, “Ultraviolet absorption in modified chemical vapour deposition preforms,” J. Opt. Soc. Am. B 11(10), 2106–2111 (1994).
5. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, “Enhanced UV photosensitivity in boron-codoped germanosilicate fibers,” Electron. Lett. 29, 45–47 (1993).
6. M. Bagnasco and V. Gusmeroli, “Bragg grating LG,” US Patent 6993241 B2 (2006).
7. S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO 2 -B 2 O 3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44(12), 5432–5437 (1973).
8. J. Kirchhov, S. Unger, and B. Knappe, “Interaction of germanium and fluorine in the preparation of optical waveguides,” in Optical Fiber Communication Conference, 1994, pp. 134–135.
9. A. G. Andreev, V. S. Ermakov, I. I. Kryukov, M. K. Tsibinogina, A. B. Shein, P. A. Zlobin, E. V. Kolobkova, and M. A. Eron’yan, “Investigation of the process of modified chemical vapor deposition in the fabrication of the glass of the SiO 2 -GeO 2 -F system,” Fiz. Khim. Stekla 32(5), 717–723 (2006).
10. K. L. Walker, R. Csencsits, and D. L. Wood, “Chemistry of fluorine incorporation in the fabrication of optical fibers,” in 6th Topical Meeting on Optical Fiber Communication, New Orleans, 1983, pp. 36–37.
11. B. J. Ainslie, K. J. Beales, C. R. Day, and J. D. Rush, “The design and fabrication of monomode optical fiber,” IEEE J. Quantum Electron. QE-18(4), 514–522 (1981).
12. A. A. Abramov, M. M. Bubnov, E. M. Dianov, L. A. Kol’Chenko, S. L. Semjonov, A. G. Shchebunjaev, A. N. Gurjanov, and V. F. Khopin, “Influence of fluorine doping on drawing-induced fibre losses,” Electron. Lett. 29(22), 1977–1978 (1993).