ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 608.1

Nonlinear optical limiter of pulsed laser radiation based on potassium–aluminum–borate glass with copper chloride nanocrystals

For Russian citation (Opticheskii Zhurnal):

Ширшнев П.С., Никоноров Н.В., Соболев Д.И., Ким А.А., Кисляков И.М., Поваров С.С., Белоусова И.М. Нелинейно оптический лимитер импульсного лазерного излучения на основе калиевоалюмоборатного стекла с нанокристаллами хлорида меди // Оптический журнал. 2017. Т. 84. № 10. С. 69–74.

 

Shirshnev P.S., Nikonorov N.V., Sobolev D.I., Kim A.A., Kislyakov I.M., Povarov S.S., Belousova I.M. Nonlinear optical limiter of pulsed laser radiation based on potassium–aluminum–borate glass with copper chloride nanocrystals [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 10. P. 69–74.

For citation (Journal of Optical Technology):

P. S. Shirshnev, N. V. Nikonorov, D. I. Sobolev, A. A. Kim, I. M. Kislyakov, S. S. Povarov, and I. M. Belousova, "Nonlinear optical limiter of pulsed laser radiation based on potassium–aluminum–borate glass with copper chloride nanocrystals," Journal of Optical Technology. 84(10), 705-709 (2017). https://doi.org/10.1364/JOT.84.000705

Abstract:

This paper discusses the nonlinear optical properties of copper-containing potassium–aluminum–borate glass when it is acted on by a pulsed laser with wavelength 532 nm and pulse width 5 ns. It is shown that the nonlinear optical limiting threshold of the original copper-containing glass is 3×10−3  J, while that of glass with copper chloride nanocrystals is 5×10−6  J. It is shown that the maximum attenuation of a transmitted laser pulse with energy 0.05 J is a factor of 100 for the original glass with transmission 85%, while it is a factor of 1000 for glass with copper chloride nanocrystals and transmittance 70%. It is concluded that potassium–aluminum–borate glasses with copper chloride nanocrystals can be used as filter–limiters for the protection of the organs of vision and photodetectors from pulsed laser radiation.

Keywords:

nonlinear optical effect, nonlinear optical limiter, potassium–aluminum–borate glass, copper chloride nanocrystal, glass-ceramic material

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (16.1651.2017/4.6).

OCIS codes: 160.4236, 160.6840

References:

1. A. Kost, J. E. Jensen, M. B. Klein, S. W. McCahon, M. B. Haeri, and M. E. Ehritz, “Optical limiting with C 60 solutions,” Proc. SPIE 2229, 78–90 (1994).
2. A. Kost, J. E. Jensen, M. B. Klein, J. C. Withers, M. B. Haeri, and M. E. Ehritz, “Fullerene-based large-area passive broadband laser filters,” Proc. SPIE 2284, 208–219 (1994).
3. S. S. James, G. S. P. Richard, R. F. Steven, E. B. Michael, and W. S. Arthur, “Materials for reverse saturable absorption optical limiters,” Mater. Res. Soc. Proc. 374, 201 (1994).
4. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4(2), 189–196 (1999).
5. J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. A: Pure Appl. Opt. 11(2), 024001 (2009).
6. D. Vincent, S. Petit, and S. L. Chin, “Optical limiting studies in a carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41(15), 2944–2946 (2002).
7. J. Wang, Y. Chen, and W. J. Blau, “Carbon nanotubes and nanotube composites for nonlinear optical devices,” J. Mater. Chem. 19(40), 7425 (2009).
8. E. Koudoumas, O. Kokkinaki, M. Konstantaki, S. Couris, S. Korovin, P. Detkov, V. Kuznetsov, S. Pimenov, and V. Pustovoi, “Onion-like carbon and diamond nanoparticles for optical limiting,” Chem. Phys. Lett. 357(5–6), 336–340 (2002).
9. J. Wang, D. Früchtl, and W. J. Blau, “The importance of solvent properties for optical limiting of carbon nanotube dispersions,” Opt. Commun. 283(3), 464–468 (2010).
10. A. V. Venediktova, A. Y. Vlasov, E. D. Obraztsova, D. A. Videnichev, I. M. Kislyakov, and E. P. Sokolova, “Stability and optical limiting properties of a single-wall carbon nanotubes dispersion in a binary water-glycerol solvent,” Appl. Phys. Lett. 100(25), 251903 (2012).
11. F. Lucas, A. Cowley, and P. J. McNally, “Structural, optical and electrical properties of co-evaporated CuCl/KCl films,” Phys. Status Solidi 6, S114 (2008).
12. Al. L. Efros, A. A. Onushchenko, and A. I. Yekimov, “Quantum size effects in semiconductor microcrystals,” Solid State Commun. 56, 921–924 (1985).
13. J. Rivera, L. A. Murray, and P. A. Hoss, “Growth of cuprous chloride single crystals for optical modulators,” J. Cryst. Growth 1, 171–176 (1967).
14. M. Cordona, “Optical properties of the silver and cuprous halides,” Phys. Rev. 129(1), 69–78 (1963).
15. A. J. Cowley, “Novel ultraviolet/blue optoelectronic materials and devices based on copper halides (CuHa),” Ph.D. thesis (Dublin City University, School of Electronic Engineering, Dublin, 2011).
16. P. V. Novikov, “Physical principles of low-threshold optical nonlinearity in silver halides and zinc and cadmium sulfides,” Author’s abstract of candidate’s dissertation, VGU, Voronezh (2009).
17. R. L. Sutherland, Handbook of Nonlinear Optics (CRC Press, New York, 2003).
18. A. V. Dotsenko, L. B. Glebov, and V. A. Tsekhomsky, Physics and Chemistry of Photochromic Glasses (CRC Press, New York, 1998).
19. N. V. Nikonorov, V. A. Tsekhomskiı˘, and P. S. Shirshnev, “Glass-ceramic optical material with a sharp absorption limit in the UV region and a method of producing it,” Russian patent No. 2,466,107 (2012).
20. V. V. Golubkov, A. A. Kim, N. V. Nikonorov, V. A. Tsekhomskiı˘, and P. S. Shirshnev, “Precipitation of nanosize CuBr and CuCl crystals in potassium–aluminum borate glasses,” Fiz. Khim. Stekla 38(3), 303–319 (2012).
21. P. S. Shirshnev, “Features of the optical properties of potassium-aluminum borate glasses with copper chloride nanocrystals,” Author’s abstract of candidate’s dissertation, ITMO University, St. Petersburg (2013).
22. A. A. Kim, N. V. Nikonorov, A. I. Sidorov, V. A. Tsekhomskii, and P. S. Shirshnev, “Nonlinear optical effects in glasses containing copper chloride nanocrystals,” Tech. Phys. Lett. 37(9), 401–403 (2011) [Pis’ma Zh. Tekh. Fiz. 37(9), 22–24 (2011)].
23. I. M. Belousova, D. A. Videnichev, I. M. Kislyakov, T. K. Krisko, N. N. Rozhkova, and S. S. Rozhkov, “Comparative studies of optical limiting in fullerene and shungite nanocarbon aqueous dispersions,” Opt. Mater. Express. 5(1), 169–175 (2015).
24. A. A. Said, T. Xia, D. Hagan, E. Stryland, and M. Sheik-Bahae, “Nonlinear absorption and refraction in CuCl at 532 nm,” J. Opt. Soc. Am. B 14(4), 824–828 (1997).
25. D. P. Dvornikov, E. L. Ivchenko, V. V. Pershin, and I. D. Yaroshetskiı˘, “The influence of transitions through deep impurity centers on the process of nonlinear absorption in semiconductors,” Sov. Phys. Semicond. 10(12), 1374–1375 (1976) [Fiz. Tekh. Poluprovodn. 10(12), 2316–2320 (1976)].

26. A. Z. Grasyuk, I. G. Zubarev, A. B. Mironov, and I. A. Poluéktov, “The spectrum of a two-photon interband impurity absorption of laser radiation in GaAs,” Sov. Phys. Semicond. 10(2), 159–162 (1976) [Fiz. Tekh. Poluprovodn. 10(2), 262–270 (1976)].
27. I. I. Areshev, “Two-photon interband absorption of laser radiation in semiconductors with the participation of impurity levels,” Semiconductors 11(5), 567–569 (1997) [Fiz. Tekh. Poluprovodn. 11(5), 962–964 (1997).
28. R. A. Baltrameyunas, “Light absorption by nonequilibrium, two-photon-generated, free and localized charge carriers,” Sov. Phys. JETP 60(7), 43–48 (1984) [Zh. Eksp. Teor. Fiz. 87(7), 74–83 (1984)].
29. A. N. Babkina, “Spectroluminescence properties of phosphate, borate, and silicate glasses doped with nanocrystals and molecular clusters of copper chloride,” Author’s abstract of candidate’s dissertation, ITMO University, St. Petersburg (2016).