ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 520.3

Daytime observation of low-brightness stars (7m–8m) from level terrain

For Russian citation (Opticheskii Zhurnal):

Гаранин С.Г., Зыков Л.И., Климов А.Н., Куликов С.М., Смышляев С.П., Степанов В.В., Сюндюков А.Ю. Дневное наблюдение звёзд слабой яркости (7m–8m) с равнинной местности // Оптический журнал. 2017. Т. 84. № 12. С. 30–37.

 

Garanin S.G., Zykov L.I., Klimov A.N., Kulikov S.M., Smyshlyaev S.P., Stepanov V.V., Syundyukov A.Yu. Daytime observation of low-brightness stars (7m–8m) from level terrain [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 12. P. 30–37.

For citation (Journal of Optical Technology):

S. G. Garanin, L. I. Zykov, A. N. Klimov, S. M. Kulikov, S. P. Smyshlyaev, V. V. Stepanov, and A. Yu. Syundyukov, "Daytime observation of low-brightness stars (7m–8m) from level terrain," Journal of Optical Technology. 84(12), 816-821 (2017). https://doi.org/10.1364/JOT.84.000816

Abstract:

This paper presents the results of the recording of stars under daylight conditions, using video cameras with a silicon photodetector array. It is shown that the SNR increases as the depth of the potential well of a pixel increases. The RT-1000DC video camera, with a potential well of capacity 170 thousand electrons, and the BCA-304 video camera, with frame summation up to an effective potential capacity of 600 thousand electrons, chosen after preliminary testing, made it possible under conditions of typical daylight turbulence of the atmosphere in the northern hemisphere of the sky to observe low-brightness stars (7m–8m) on level terrain.

Keywords:

daytime stars observation, silicon video cameras, penetrating power, signal-to-noise ratio, depth of photodetector potential well

OCIS codes: 110.0115, 040.1490

References:

1. A. G. Masevich, The Problem of Contamination of Space (Space Junk): A Collection of Scientific Articles (Kosmosinform, Moscow, 1993).
2. I. V. Tarasenko, V. S. Yurasov, A. O. Konoplev, and K. N. Mikhnev, “Methods and technical media for detecting and measuring the parameters of motion of space junk,” Elektromagn. Volny Elektron. Sist. 19(8), 55–59 (2014).
3. K. N. Sviridov and N. D. Belkin, “Ground-based space system for monitoring space junk,” Konvers. Mashinostr. (3) (1997).
4. N. A. Artem’eva, E. S. Bakanas, S. I. Barabanov, A. V. Vityazev, V. A. Volkov, D. O. Glazachev, V. G. Degtyar’, V. V. Emel’yanenko, B. A. Ivanov, O. M. Kochetova, N. V. Kulikova, Yu. D. Medvedev, S. A. Naroenkov, I. V. Nemchinov, G. V. Pechernikova, V. G. Pol’, O. P. Popova, L. V. Rykhlova, V. V. Svettsov, A. V. Simonov, L. L. Sokolov, R. M. Timerbaev, Yu. A. Chernetenko, V. A. Shor, V. V. Shuvalov, and B. M. Shustov, Asteroid–comet danger: yesterday, today, tomorrow, B. M. Shustova and L. V. Rykhlovoı˘, eds. (Fizmatlit, Moscow, 2013).
5. I. Z. Avzalov, Yu. V. Bazhanov, P. A. Bakut, M. Yu. Berezentsev, A. N. Karpov, Z. M. Malysheva, V. D. Shargorodskiı˘, and Yu. P. Shumilov, “Optoelectronic system for daytime observation of space objects on a background of stars,” Elektromagn. Volny Elektron. Sist. 14(12), 17–23 (2009).
6. S. F. Kamus, N. A. Lipin, M. N. Sokol’skiı˘, L. E. Levandovskaya, and S. A. Denisenko, “Amateur telescopes,” J. Opt. Technol. 69(9), 671–673 (2002) [Opt. Zh. 69(9), 81–83 (2002)].
7. W. Rork, S. S. Lin, and A. J. Yakutis, “Ground-based electro-optical detection of artificial satellites in daylight from reflected sunlight,” Project report ETS-63, Massachusetts Institute of Technology, Massachusetts, 1982.
8. S. F. Bondar’, V. G. Vygon, A. V. Malanin, and V. D. Shilin, “Estimating the efficiency of observing satellites by passive optical means in twilight and daylight,” J. Opt. Technol. 61(3), 238–242 (1994) [Opt. Zh. 61(3), 70–76 (1994)].
9. D. Chesser, D. Vunck, T. Born, W. Axelson, K. Rehder, and R. Medrano, “NIR daylight acquisition sensor improves mission capabilities,” Proc. SPIE 5082, 1–12 (2003).
10. M. C. Roggemann, D. Douglas, E. Therkildsen, D. Archambeault, R. Maeda, D. Schultz, and B. Wheeler, “Daytime image measurement and reconstruction for space situational awareness application,” AMOS, 2010, 14–17 September, Maui, Hawaii, pp. 172–184.
11. E. A. Grishin, S. N. Melkov, and V. L. Milovidov, “Infrared camera based on a Schottky barrier for daylight observation of the stars,” Prib. Tekh. Eksp. (2) 83–86 (2003).
12. S. B. Novikov and A. A. Ovchinnikov, “The limiting possibilities of obtaining images of astronomical objects with high angular resolution from ground-based telescopes,” in Collection of Articles on Atmospheric Instability and the Adaptive Telescope (Nauka, Leningrad, 1988), pp. 14–17.
13. N. N. Evtikheev, V. V. Krasnov, V. G. Rodin, I. V. Solyakin, S. N. Starikov, P. A. Cheremkhin, and E. A. Shapkarina, “Increasing the SNR by spatial averaging when images are being recorded,” Vestn. Ross. Univ. Druzhby Nar. Ser. Matem. Inform. Fiz. (4) 122–136 (2012).
14. D. S. Brondz and E. N. Kharitonova, “Correction of geometrical noise of a photodetector array by means of the least-squares approximation of the transfer characteristics of the array by a T-order polynomial,” Zh. Radioélektron. (11), 29 (2008).
15. L. I. Zykov, V. A. Lebedev, S. P. Smyshlyaev, V. V. Stepanov, and A. Yu. Syundyukov, “Estimating the penetrating power of visualization of the stars on the background of a variable-brightness daytime sky,” in Collection of Reports of the Ninth All-Russia School of Undergraduate and Graduate Students, Young Scientists, and Specialists on Laser Physics and Laser Technologies, 2015, pp. 197–203.
16. European Machine Vision Association, “Standard for characterization of image sensors and cameras,” Release 3.0, EMVA Standard 1288, November 29, 2010.
17. Web page of Watec Cameras, 2014.
18. Digital Camera RT-1000DC, Technical description and operating instructions, OOO Rastr Tekhnolodzhi, 2014.
19. Digital Camera HXG-40NIR, Technical description and operating instructions, Baumer Optronics, 2012.
20. Video camera with variable summation frequency, Technical description and operating instructions, ZAO NPK Videoskan, 2014.
21. A. V. Pavlov, Optoelectronic Devices (Énergiya, Moscow, 1974).
22. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, New York, 1984; Mir, Moscow, 1987).
23. The Brightness of the Cloudless Daytime Sky (Experimental Data) (Gos. Opt. Inst. S.I. Vavilova, Leningrad, 1971).
24. O. B. Vasil’ev, “On the Dependence of the Twinkling of the Stars on the Zenith Distance,” in Optical Instability of the Earth’s Atmosphere (Nauka, Moscow, 1965), pp. 40–48.
25. I. G. Kolchinskiı˘, “On the question of the dependence of the twinkling of the stars in telescopes on the zenith distance,” in Atmospheric Optics (Nauka, Moscow, 1968), pp. 23–30.
26. M. A. Kalistratova, “Measuring the jitter of the edge of the solar image,” in Atmospheric Optics (Nauka, Moscow, 1968), pp. 12–22.