ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 534.8, 535.42

Influence of light-induced gratings on acousto-optic interaction of Bessel light beams in uniaxial gyrotropic crystals

For Russian citation (Opticheskii Zhurnal):

Кулак Г.В., Крох Г.В., Ропот П.И., Шакин О.В. Влияние светоиндуцированных решёток на акустооптическое взаимодействие бесселевых световых пучков в одноосных гиротропных кристаллах // Оптический журнал. 2017. Т. 84. № 2. С. 103–109.

 

Kulak G.V., Krokh G.V., Ropot P.I., Shakin O.V. Influence of light-induced gratings on acousto-optic interaction of Bessel light beams in uniaxial gyrotropic crystals [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 2. P. 103–109.

For citation (Journal of Optical Technology):

G. V. Kulak, G. V. Krokh, P. I. Ropot, and O. V. Shakin, "Influence of light-induced gratings on acousto-optic interaction of Bessel light beams in uniaxial gyrotropic crystals," Journal of Optical Technology. 84(2), 146-151 (2017). https://doi.org/10.1364/JOT.84.000146

Abstract:

The influence of light-induced gratings, caused by cubic optical nonlinearity, on the Bragg diffraction of Bessel light beams by ultrasound in uniaxial gyrotropic crystals was studied theoretically. It was shown that, when Bessel light beams are used, the threshold for a substantial manifestation of optical nonlinearity during Bragg diffraction is significantly reduced. It was established that the efficiency of the acousto-optic interaction increases with increasing light intensity in the anti-Stokes regime of diffraction and decreases monotonically in the Stokes regime. Satisfactory qualitative agreement between the theoretical and experimental dependences of the diffraction efficiency on the light and ultrasound intensities was demonstrated using a uniaxial gyrotropic quartz crystal.

Keywords:

ultrasound wave, gyrotropic crystal, light-induced grating, Bessel light beam, Bragg diffraction, diffraction efficiency

OCIS codes: 190.2055; 190.4720; 230.1040

References:

1. J. Durnin, “Exact solutions for nondiffracting beams,” J. Opt. Soc. Am. 4(4), 651–654 (1987).
2. J. Durnin, J. J. Miceli, and J. H. Eberli, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
3. J. Turunen, A. Vasara, and A. T. Friberg, “Realization of general nondiffracting beams with computer generated holograms,” J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).
4. R. M. Herman and T. A. Wiggins, “Self-reconstruction of a distorted nondiffracting beam,” J. Opt. Soc. Am. A 8(6), 932–942 (1991).
5. V. N. Belyı˘, N. S. Kazak, N. V. Kondratyuk, N. A. Khilo, and A. A. Shagov, “Generation of the second harmonic by Bessel light beams in KTP crystals,” Quantum Electron. 25(11), 1037–1042 (1998).
6. V. N. Belyı˘, N. S. Kazak, and N. A. Khilo, “Transformation of the frequency of Bessel light beams by nonlinear crystals,” Quantum Electron. 30(9), 753–766 (2000).
7. V. N. Belyı˘, G. V. Kulak, G. V. Krokh, and O. V. Shakin, “Polarization-independent acousto-optic modulation of Bessel light beams,” Zh. Prikh. Spectrosc. 81(1), 83–88 (2014).
8. V. N. Belyı˘, S. V. Kulakov, G. V. Kulak, and O. V. Shakin, “Polarization-independent acousto-optic modulation of Bessel light beams,” in XVI International Conference for Young Researchers. Wave Electronics and Its Application in the Information and Telecommunication Systems, Saint-Petersburg, 2–6 June 2013, p. 33.
9. N. A. Khilo, N. S. Kazak, and V. N. Belyı˘, “Generation of TH- and TE-polarized Bessel light at acousto-optic interaction in anisotropic crystals,” Opt. Commun. 325, 84–91 (2014).
10. A. Yariv and P. Yukh, Optical Waves in Crystals (Mir, Moscow, 1987).

11. G. V. Kulak, “Diffraction of light by ultrasound in gyrotropic nonlinear media,” in Proceedings of NAS of Belarus, Series on Physical-Mathematical Sciences (1985), Vol. 1, pp. 63–66.
12. P. Yeh and M. Khoshevisan, “Nonlinear-optical Bragg scattering in Kerr media,” J. Opt. Soc. Am. 4(12), 1954–1957 (1987).
13. V. V. Proklov, S. V. Peshin, B. L. Davydov, and G. N. Shkerdin, “Study of the diffraction of high-power laser radiation in TeO2,” in Brief Communications on Physics. Proceedings of FIAN (1979), pp. 1543–1545.
14. A. R. Kessel and V. M. Musin, “Diffraction of light by sound in optically nonlinear media,” FTT 22(8), 2483–2485 (1980).
15. V. N. Balakshy, V. N. Parygin, and L. E. Chirkov, Physical Principles of Acousto-optics (Radio and Communication, Moscow, 1985).
16. V. N. Belyı˘ and G. V. Kulak, “Diffraction of light by ultrasound in gyrotropic cubic crystals in the Bragg regime,” Zh. Prikh. Spectrosc. 54(5), 803–808 (1991).
17. N. Blombergen, Nonlinear Optics (Mir, Moscow, 1966).
18. D. M. Chose, C. R. Gijliano, R. W. Hellwarth, L. D. Hess, F. I. MgClusen, and W. G. Wagner, IEEE Quantum Electron. 2, 553–557 (1966).
19. R. A. Ganeev and G. Usmanov, “Nonlinear optical characteristics of various media,” Quantum Electron. 37(7), 605–622 (2007).
20. B. Crosignani, B. Daino, and P. Di Porto, “Depolarization of light due to the optical Kerr effect in low-birefringence single-mode fibers,” J. Opt. Soc. Am. B 3(8), 1120–1123 (1986).