ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.42, 681.2

Ability of a four-channel liquid-crystal modulator to generate light fields with a complex intensity distribution

For Russian citation (Opticheskii Zhurnal):

Котова С.П., Майорова А.М., Самагин С.А. Возможности четырехканального жидкокристаллического модулятора по формированию световых полей со сложным распределением интенсивности // Оптический журнал. 2017. Т. 84. № 5. С. 46–55.

 

Kotova S.P., Mayorova A.M., Samagin S.A. Ability of a four-channel liquid-crystal modulator to generate light fields with a complex intensity distribution [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 5. P. 46–55.

For citation (Journal of Optical Technology):

S. P. Kotova, A. M. Mayorova, and S. A. Samagin, "Ability of a four-channel liquid-crystal modulator to generate light fields with a complex intensity distribution," Journal of Optical Technology. 84(5), 323-330 (2017). https://doi.org/10.1364/JOT.84.000323

Abstract:

Numerical modeling methods are used to show that the ability of a four-channel liquid-crystal modulator to form light fields with a complex intensity distribution is not restricted to contour light fields in the form of rings, ellipses, and their arcs. Light fields can be formed with an intensity distribution in a transverse plane in the form of the boundaries of squares, rhombuses, parallelograms, and octagons. The light field can be focused at definite distances from a liquid-crystal focuser into points at the corners of the corresponding quadrilateral and at its center. It is shown that the field structure can be controlled by varying the amplitudes and phases of the potentials, as well as the voltage frequencies. Possibilities of using the resulting fields in optical-manipulation tasks are discussed.

Keywords:

liquid-crystal modulator, light fields with complex spacial structure, dynamic control

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (RFBR) (16-29-14012, 16-42-630773 r_a).

OCIS codes: 230.3720, 070.6120, 140.3300

References:

1. V. A. Soı˘fer, Methods of Computer Optics (Fizmatlit, Moscow, 2003).
2. A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photon. 8(2), 200–227 (2016).
3. K. Dholakia and T. ˇCižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
4. M. Padjett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
5. E. G. Abramochkin, A. A. Vasil’ev, P. V. Vashurin, L. I. Zhmurova, V. A. Ignatov, and A. F. Naumov, “Controllable liquid-crystal lenses,” Preprint FIAN, Moscow, 1988, No. 194.
6. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
7. A. K. Kirby, P. J. Hands, and G. D. Love, “Liquid-crystal multi-mode lenses and axicons based on electronic phase shift control,” Opt. Express 15(21), 13496–13501 (2007).
8. N. Fraval and J. L. de Bougrenet de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid-crystal lens with short focal lengths,” Appl. Opt. 49(15), 2778–2783 (2010).
9. J. F. Algorri, V. Urruchi, N. Bennis, and J. M. Sánchez-Pena, “Modal liquid-crystal microaxicon array,” Opt. Lett. 39(12), 3476–3479 (2014).
10. J. F. Algorri, G. D. Love, and V. Urruchi, “Modal liquid-crystal array of optical elements,” Opt. Express 21(21), 24809–24818 (2013).
11. J. F. Algorri, V. Urruchi, B. Garcia-Cámara, and J. M. Sánchez-Pena, “Generation of optical vortices by an ideal liquid-crystal spiral phase plate,” IEEE Electron Device Lett. 35(8), 856–858 (2014).
12. S. P. Kotova, V. V. Patlan’, and S. A. Samagin, “Tunable liquid-crystal focusing device. 1. Theory,” Quantum Electron. 41(1), 58–64 (2011) [Kvant. Elektron. 41(1), 58–64 (2011)].
13. S. P. Kotova, V. V. Patlan’, and S. A. Samagin, “Tunable liquid-crystal focusing device. 2. Experiment,” Quantum Electron. 41(1), 65–70 (2011). [Kvant. Elektron. (Moscow) 41(1), 65–70 (2011)].
14. S. P. Kotova, V. V. Patlan, and S. A. Samagin, “Focusing light into a line segment of arbitrary orientation using a four-channel liquid-crystal light modulator,” J. Opt. 15(3), 035706 (2013).
15. S. P. Kotova, A. M. Mayorova, and S. A. Samagin, “Tunable 4-channel LC focusing device: summarized results and additional functional capabilities,” J. Opt. 17(5), 055602 (2015).
16. L. M. Blinov, Electro- and Magneto-optic Liquid Crystals (Nauka, Moscow, 1978).
17. A. V. Korobtsov, S. P. Kotova, N. N. Losevskiı˘, A. M. Mayorova, and S. A. Samagin, “Formation of contour optical traps using a four-channel liquid-crystal focusing device,” Quantum Electron. 44(12), 1157–1164 (2014) [Kvant. Elektron. (Moscow) 44(12), 1157–1164 (2014)].
18. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, V. Patlan, and S. Samagin, “Optical trap formation with a four-channel liquid-crystal light modulator,” J. Opt. 16, 035704 (2014).
19. S. P. Kotova, A. M. Mayorova, and S. A. Samagin, “Analysis of the light fields formed by an LC focuser, as applied to tasks of three-dimensional optical manipulation,” Izv. Vyssh. Uchebn. Zaved. Fiz. 58(10), 22–28 (2015).
20. E. Abramochkin, K. Afanasiev, V. Volostnikov, A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, and E. Razueva, “Formation of vortex light fields of specified intensity for laser micromanipulation,” Bull. Russ. Acad. Sci. 72(1), 68–70 (2008).
21. A. Jesacher, S. Maurer, S. Bernet, A. Schwaighofer, and M. Ritsch-Marte, “Full phase and amplitude control of holographic optical tweezers with high efficiency,” Opt. Express 16(7), 4479–4486 (2008).
22. A. P. Porfir’ev and R. V. Skidanov, “A simple method of forming hollow nondiffracting light beams with intensity distribution in the form of the contour of a regular polygon,” Komp’yut. Opt. 38(2), 243–248 (2014).
23. J. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, “Shaping of light beams along curves in three dimensions,” Opt. Express 21(18), 20544–20555 (2013).
24. A. P. Porfirev and R. V. Skidanov, “Generation of an array of optical bottle beams using a superposition of Bessel beams,” Appl. Opt. 52(25), 6230–6238 (2013).
25. A. Korobtsov, S. Kotova, N. Losevsky, A. Mayorova, S. Samagin, and V. Volostnikov, “Capture of microscopic objects by contour optical traps formed by 4-channel liquid-crystal modulator,” J. Phys. 605, 012007 (2015).