ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.7.068

Thulium fiber laser with wavelength 1908  nm

For Russian citation (Opticheskii Zhurnal):

Колегов А.А., Черникова А.В., Лешков А.О., Белов Е.А. Тулиевый волоконный лазер с длиной волны 1908 нм // Оптический журнал. 2017. Т. 84. № 8. С. 30–34.

 

Kolegov A.A., Chernikova A.V., Leshkov A.O., Belov E.A. Thulium fiber laser with wavelength 1908 nm [in Russian] // Opticheskii Zhurnal. 2017. V. 84. № 8. P. 30–34.

For citation (Journal of Optical Technology):

A. A. Kolegov, A. V. Chernikova, A. O. Leshkov, and E. A. Belov, "Thulium fiber laser with wavelength 1908  nm," Journal of Optical Technology. 84(8), 528-531 (2017). https://doi.org/10.1364/JOT.84.000528

Abstract:

This paper presents the results of developing a thulium fiber laser with output power 38 W and wavelength 1908 nm. The active fiber thus developed and fabricated has high thulium-ion concentration, which significantly increases the efficiency of the laser because of the cross-relaxation effect. The active fiber thus fabricated is determined to have an absorption peak at 788 nm. The results of developing the laser can be used to fabricate thulium lasers to be used in medicine, including lasers with power greater than 100 W. The laser design thus developed makes it possible to fabricate compact fiber lasers with power up to 50 W.

Keywords:

fiber laser, thulium laser, medical laser

OCIS codes: 140.3510; 060.3510

References:

1. I. A. Abushkin, V. A. Privalov, A. V. Lappa, N. V. Noskov, E. A. Neizvestnykh, A. N. Kotlyarov, and Y. G. Shekunova, “Laser technologies in treatment of degenerative-dystrophic bone diseases in children,” Proc. SPIE 8926, 89263Q (2014).
2. I. A. Abushkin, V. A. Privalov, A. V. Lappa, and V. P. Minaev, “Fiber 1.56–1.9 μm lasers in treatment of vascular malformations in children and adults,” Proc. SPIE 8565, 85650V (2013).
3. R. Thomas, W. Herrmann, T. Bach, F. Imkamp, A. Georgiou, M. Burchardt, M. Oelke, and A. J. Gross, “Thulium laser enucleation of the prostate (ThuLEP): transurethral anatomical prostatectomy with laser support. Introduction of a novel technique for the treatment of benign prostatic obstruction,” World J. Urol. 28, 45–51 (2010).
4. V. A. Serebryakov, É. V. Boko, A. G. Kalintsev, A. F. Kornev, A. S. Narivonchik, and A. L. Pavlova, “Mid-IR laser for high-precision surgery,” J. Opt. Technol. 82(12), 781–788 (2015) [Opt. Zh. 82(12), 3–13 (2015)].
5. V. A. Serebryakov, V. Yu. Khramov, A. S. Narivonchik, N. A. Kalintseva, A. F. Kornev, A. L. Pavlova, and D. V. Skvortsov, “Pulsed-periodic Ho:YLF lasers: optimization problems,” J. Opt. Technol. 83(12), 722–728 (2016) [Opt. Zh. 83(12), 17–24 (2016)].
6. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2-μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, P. Bishnu, ed. (InTech, Croatia, 2010), pp. 471–500.
7. L. G. Evsikova and Yu. A. Goremykin, “Determining the atmospheric transmittance for laser wavelengths on an oblique track,” J. Opt. Technol. 83(8), 486–489 (2016) [Opt. Zh. 83(8), 48–52 (2016)].
8. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron. 31, 4–15 (1993).
9. V. A. Rusov, V. A. Serebryakov, S. V. Doroganov, N. A. Kalintseva, A. S. Narivonchik, and D. V. Skvortsov, “Electro-optical modulators based on KTP crystals for high-power lasers in the mid-IR region,” J. Opt. Technol. 83(12), 716–721 (2016) [Opt. Zh. 83(12), 10–16 (2016)].
10. G. Frith, D. G. Lancaster, and S. D. Jackson, “85-W Tm 3+ -doped silica fiber laser,” Electron. Lett. 41(12), 22–23 (2005).
11. A. Hemming, S. Bennetts, A. Davidson, N. Carmody, and D. G. Lancaster, “A 226-W high-power Tm fiber laser,” Opt. Express 20(16), 17539–17544 (2012).
12. G. Frith, A. Carter, B. Samson, J. Farroni, K. Farley, and K. Tankala, “Highly efficient 70-W all-fiber Tm-doped laser system operating at 1908 nm,” in OECC/ACOFT Conference, Sydney, 2008, pp. 1–2.
13. W. Jianfeng, Y. Zhidong, and J. Shibin, “Highly efficient high-power thulium-doped germanate glass fiber laser,” Opt. Lett. 32(6), 638–640 (2007).
14. T. McComb, A. Sims, C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
15. Y. A. Barannikov, F. V. Shcherbina, V. P. Gapontsev, M. Meleshkevich, and N. S. Platonov, “Linear-polarization, CW generation of 60-W power in a single-mode, Tm fibre laser,” in Conference on Lasers and Electro-Optics (2005), pp. 811–812.
16. R. L. Freeman, Fiber-Optics Systems for Telecommunications (Wiley-Interscience, New York, 2002; Tekhnosfera, Moscow, 2007).
17. S. Jackson and T. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
18. G. Frith, A. Carter, B. Samson, J. Faroni, K. Farley, K. Tankala, and G. Town, “Mitigation of photodegradation in 790-nm-pumped Tm-doped fibers,” Proc. SPIE 7580, 758001A (2010).
19. M. Taher, H. Gebavi, S. Taccheo, D. Milanese, and R. Balda, “Novel approach towards cross-relaxation energy transfer calculation applied on highly thulium-doped tellurite glasses,” Opt. Express 19(27), 26269–26274 (2011).
20. M. A. Mel’kumov, “High-power cw ytterbium lasers based on light-guides with a multielement first coating,” Dissertation for candidate of physical and mathematical sciences, (A. M. Prokhorov Moscow Institute of General Physics, Russian Academy of Sciences, 2006).
21. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978).
22. S. D. Agger and J. H. Poulsen, “Emission and absorption cross section of thulium-doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
23. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 mm,” Appl. Phys. B 78, 325–333 (2004).
24. G. Turri, V. Sudesh, M. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm 3+ in germanate, silica, and phosphate glasses: a comparative study,” J. Appl. Phys. 103, 93–104 (2008).
25. P. Peterka, I. Kasik, A. Dhar, B. Dussardier, and W. Blanc, “Theoretical modeling of fiber laser at 810 nm based on thulium-doped silica fibers with enhanced 3 H 4 level lifetime,” Opt. Express 19, 2773–2781 (2001).