ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-01-29-33

УДК: 532.783, 535.326, 535,512

Optical characteristics of liquid-crystal domains probed by a focused laser beam

For Russian citation (Opticheskii Zhurnal):

Паршин А.М. Оптические характеристики жидкокристаллических доменов, зондируемых сфокусированным лазерным лучом // Оптический журнал. 2018. Т. 85. № 1. С. 29–33. http://doi.org/10.17586/1023-5086-2018-85-01-29-33

 

Parshin A.M. Optical characteristics of liquid-crystal domains probed by a focused laser beam [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 1. P. 29–33. http://doi.org/10.17586/1023-5086-2018-85-01-29-33

For citation (Journal of Optical Technology):

A. M. Parshin, "Optical characteristics of liquid-crystal domains probed by a focused laser beam," Journal of Optical Technology. 85(1), 22-25 (2018). https://doi.org/10.1364/JOT.85.000022

Abstract:

A technique for determining the optical characteristics of the domain structures of nematic liquid crystals using a focused laser beam is presented. The dependences of the intensity of polarized light on the voltage of a separate nematic domain formed by a polycarbonate surface in the presence of a magnetic field are obtained. It is shown that the optical characteristics cannot be interpreted within the framework of the concept of light scattering, which is suitable in the case of an ensemble of domains probed by a wide laser beam. The analysis of the results is based on the assumption of gradient index optics.

Keywords:

laser radiation, light intensity, interference, liquid crystal, polycarbonate

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (RFBR) (15-02-06924, 16-53-00073); Siberian Branch, Russian Academy of Sciences (SB RAS) (2P 0356-2015-0410, 0356-2015-041).

OCIS codes: 160.3710, 230.3720, 260.3160

References:

1. M. G. Tomilin and S. M. Pestov, Properties of Liquid Crystal Materials (Politekhnika, St. Petersburg, 2005).
2. P. S. Drzaic, “Polymer dispersed nematic liquid crystal for area displays and light valves,” J. Appl. Phys. 60(6), 2142–2148 (1986).
3. J. L. West, J. W. Doane, and S. Zumer, “Liquid crystal display material comprising a liquid crystal dispersion in a thermoplastic resin,” U.S. Patent 4685771 (1987).
4. S. Zumer and J. W. Doane, “Light scattering from a small nematic droplet,” Phys. Rev. A 34, 3373–3386 (1986).
5. S. Zumer, “Light scattering from nematic droplet: anomalous-diffraction approach,” Phys. Rev. A 37, 4006–4015 (1988).
6. A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loı˘ko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” JETP Lett. 71(12), 486–488 (2000) [Pis’ma Zh. Eksp. Teor. Fiz. 71(12), 710–713 (2000)].
7. A. M. Parshin, V. A. Gunyakov, V. Y. Zyryanov, and V. F. Shabanov, “Domain structures in nematic liquid crystals on the polycarbonate surface,” Int. J. Mol. Sci. 14, 16303–16320 (2013).
8. A. M. Parshin, V. Y. Zyryanov, and V. F. Shabanov, “Electric and magnetic field-assisted orientational transitions in the ensembles of domains in a nematic liquid crystal on the polymer surface,” Int. J. Mol. Sci. 15, 17838–17851 (2014).
9. A. M. Parshin, V. Y. Zyryanov, and V. F. Shabanov, “The director field distribution with the strongly pinned alignment in nematic structures at the polymer surface,” Liq. Cryst. 42, 57–64 (2015).
10. A. M. Goncharenko, Gaussian Light Beams (KomKniga, Moscow, 2005).
11. V. Presnyakov, K. Asatryan, A. Tork, T. Galstyan, and V. Chigrinov, “Optical polarization grating induced liquid crystal microstructure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
12. O. Sova, V. Reshetnyak, T. Galstian, and K. Asatryan, “Electrically variable liquid crystal lens based on the dielectric dividing principle,” J. Opt. Soc. Am. A 32, 803–808 (2015).