ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-01-03-11

УДК: 535.361, 610.849.19, 618.723

Optical characteristics of liquid-crystal modulators based on electric-field-controlled birefringence in various low-thickness planar structures

For Russian citation (Opticheskii Zhurnal):

Симоненко Г.В. Оптические характеристики жидкокристаллических модуляторов на основе эффекта управляемого электрическим полем двойного лучепреломления в различных планарных структурах малой толщины // Оптический журнал. 2018. Т. 85. № 1. С. 3–11. http://doi.org/10.17586/1023-5086-2018-85-01-03-11

 

Simonenko G.V. Optical characteristics of liquid-crystal modulators based on electric-field-controlled birefringence in various low-thickness planar structures [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 1. P. 3–11. http://doi.org/10.17586/1023-5086-2018-85-01-03-11

For citation (Journal of Optical Technology):

G. V. Simonenko, "Optical characteristics of liquid-crystal modulators based on electric-field-controlled birefringence in various low-thickness planar structures," Journal of Optical Technology. 85(1), 1-7 (2018). https://doi.org/10.1364/JOT.85.000001

Abstract:

The characteristics of optical-radiation modulators based on electric-field-controlled birefringence in various low-thickness planar liquid-crystal structures are comprehensively investigated by computer modeling. It is shown that a shutter whose operation is based on the phenomenon of electric-field-controlled interference of polarized rays in thin planar liquid-crystal cells with zero twist angle of the structure and symmetric boundary conditions can be used in fast-acting devices with response times in the range from 100 to 200 μs.

Keywords:

liquid crystals, modulators, computer modeling

OCIS codes: 160.3710, 230.3720

References:

1. I. Mateshev and A. Turkin, “Review of commercial technologies for producing LC arrays,” Sovrem. Elektron. (8), 16–19 (2014).
2. A. Turkin, “A Sharp LC panel for commercial applications: main features and review of the product,” Kompon. Tekhnol. (3), 80–82 (2012).
3. I. Mateshev and A. Turkin, “Review of new Sharp LC panels for commercial applications,” Sovrem. Elektron. (5), 22–25 (2014).
4. A. Samarin, “The best display products of 2008,” Kompon. Tekhnol. (8), 10–13 (2008).
5. S. Pakhomov, “Modern LCD monitors,” Komp’yuterPress, 2004, http:// compress.ru/article.aspx?id=12688.
6. D. Vyalkov, “A comparison of types of arrays (LCD, TFT) and monitors,” 2012, http://www.pc-someworld.ru/hardware/235/sravnenie-tipov-matric-zhk-lcdtft-monitorov/.
7. A. J. Woods, “Crosstalk in stereoscopic displays: a review,” Electron. Imaging, [Pap. Int. Symp.] 21(4), 040902 (2012).
8. V. A. Ezhov, “Auto-stereoscopic display with completely screened 3D distribution (versions) and method of controlling an active parallax barrier display,” Russian Patent RU 2,490,818 (2012).
9. S. A. Studentsov and V. A. Ezhov, “Multistandard liquid-crystal stereo glasses,” Russian Patent RU 2,488,150 (2011).
10. G. V. Simonenko, S. A. Studentsov, and V. A. Ezhov, “Choosing the optimum design for an optical shutter based on a π-cell,” J. Opt. Technol. 80(9), 537–541 (2013) [Opt. Zh. 80(9), 18–22 (2013)].
11. G. V. Simonenko, “Analysis of various liquid-crystal optical-shutter designs,” J. Opt. Technol. 81(10), 594–598 (2014) [Opt. Zh. 81(10), 50–55 (2014)].
12. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Chichester, 2014).
13. H. H. Cheng, A. Bhowmik, and P. J. Bos, “Fast-response liquid crystal variable optical retarder and multilevel attenuator,” Opt. Eng. 52(10), 105–107 (2013).
14. L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D 44(2), 442002 (2011).
15. M. W. Geis, R. J. Molnar, G. W. Turner, and T. M. Lyszczarz, “30 to 50-ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
16. M. Mohammadimasoudi, J. Shin, K. Lee, K. Neyts, and J. Beeckman, “Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal,” AIP Adv. 5, 047122 (2015).
17. A. S. Sukharier, Liquid-Crystal Indicators (Radio i Svyaz’, Moscow, 1991).
18. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech House, Boston, 1999).
19. G. Simonenko, V. Tuchin, and D. Zimnyakov, The Optical Characteristics of Liquid-Crystal and Biological Media (Academic Publishing GmbH & Co., 2010).
20. G. V. Simonenko, S. A. Studentsov, and V. A. Ezhov, “Achromaticity of an LC modulator for 3D applications,” Zhidk. Krist. Ikh Prakt. Ispol’z. 15(3), 82–90 (2015).
21. A. B. Shashlov, R. M. Uvarova, and A. V. Churkin, Principles of Optical Engineering (Izd. MGUP, Moscow, 2002).
22. L. F. Artyushin, Principles of Color Reproduction in Photography, Cinematography, and Polygraphy (Iskusstvo, Moscow, 1970).
23. D. A. Yakovlev, G. V. Simonenko, V. I. Tsoi, V. G. Chigrinov, N. A. Khokhlov, and Yu. B. Podyachev, “LCD-DESIGN: universal system for computer simulation and optimization of electro-optical devices on the base of liquid crystal,” Proc. SPIE 4705, 255–263 (2002).
24. V. G. Chigrinov, G. V. Simonenko, D. A. Yakovlev, V. I. Tsoı˘, N. A. Khokhlov, and Yu. B. Pod’yachev, “Universal complex for computer programs for optimizing the planning of liquid-crystal displays,” Informat. Ser. Sredstva Otobrazheniya Inf. VNII Mezhotrasl. Inf. (2), 90–94 (1993).
25. V. G. Chigrinov, G. V. Simonenko, D. A. Yakovlev, and Yu. B. Podjachev, “The optimization of LCD electrooptical behavior using MOUSE-LCD software,” Mol. Cryst. Liq. Cryst. 351, 17–25 (2000).
26. G. V. Simonenko, V. I. Tsoı˘, and D. A. Yakovlev, “Method of computing the orientation angles of the optical axis of a liquid crystal in an electric field,” Komp’yut. Opt. (21), 88–99 (2001).
27. A. A. Mironov and G. V. Simonenko, “Optical response of a twist indicator under two-dimensional elastic deformation of the liquid crystal caused by an electric field as a function of the physical and design parameters of the device,” Komp’yut. Opt. (30), 74–80 (2006).
28. V. I. Tsoı˘, “Technique for calculating the optical properties of liquid-crystal indicators based on the birefringence of twisted structures,” in Abstracts of Reports at the Fifth Conference of Socialist Countries on Liquid Crystals (Izd. Odess. Gos. Univ., Odessa, 1983), vol. 2, p. 84.
29. G. V. Simonenko, D. A. Yakovlev, V. I. Tsoı˘, A. G. Finkel’, and G. I. Mel’nikova, “Modeling liquid-crystal indicators based on coherence and Jones arrays,” Elektron. Tekhn. Ser. 4 (2), 36–41 (1988).
30. A. S. Sukharier, I. S. Lin’kova, V. I. Tsoı˘, and G. V. Simonenko, “Features of the dynamic characteristics of LC cells based on the STN structure,” Elektron. Tekhn. Ser. 4 (4), 9–11 (1992).
31. G. V. Simonenko, S. A. Studentsov, and V. A. Ezhov, “Liquid-crystal modulator based on the waveguide regime in a twisted structure with a large twist angle,” Izv. Sarat. Univ. Nov. Ser. Ser. Fizika. 15(3), 24–30 (2015).
32. V. A. Ezhov, V. A. Brezhnev, S. A. Studentsov, and G. V. Simonenko, “Passive-matrix liquid-crystal screen and a method of controlling the given screen,” Russian Patent 2001110750/09(071740) (2001).
33. G. V. Simonenko, V. A. Brezhnev, and S. A. Studentsov, “Computer modeling of the optical response of a liquid-crystal display at high control voltages. Part 1. Dynamics of the optical response as a function of the display’s design parameters,” J. Opt. Technol. 70(7), 485–488 (2003) [Opt. Zh. 70(7), 42–45 (2003)].
34. G. V. Simonenko, V. A. Brezhnev, and S. A. Studentsov, “Computer modeling of the optical response of a liquid-crystal display at high control voltages. Part 2. How the parameters of the liquid-crystal material affect the dynamics of the display’s optical response,” J. Opt. Technol. 70(7), 489–491 (2003) [Opt. Zh. 70(7), 46–49 (2003)].
35. G. V. Simonenko, S. A. Studentsov, and V. A. Ezhov, “Computer analysis of the optical characteristics of various designs of a classical LC modulator based on the guest-host effect,” Komp’yut. Opt. 39(3), 376 (2015).
36. G. V. Simonenko, S. A. Studentsov, and V. A. Ezhov, “Choosing the optimum design for an optical shutter based on a π-cell,” J. Opt. Technol. 80(9), 537–541 (2013) [Opt. Zh. 80(9), 18–22 (2013)].
37. P. J. Bos and K. R. Beran, “The π-cell: a fast liquid-crystal optical-witching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
38. V. A. Ezhov, S. A. Studentsov, G. V. Simonenko, and P. I. Ivashkin, “Cylindrical liquid-crystal modulator for stereoscopic video systems,” Phys. Wave Phenom. 23(4), 265–267 (2015).