ru/ ru

ISSN: 1023-5086


ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-11-65-80

УДК: 547.97:541.14, 535.34, 535.37, 66.094.3

Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins

For Russian citation (Opticheskii Zhurnal):

Муравьева Т.Д., Дадеко А.В., Киселев В.М., Крисько Т.К., Кисляков И.М., Крисько А.В., Стародубцев А.М., Багров И.В., Белоусова И.М., Пономарев Г.В. Сравнительное изучение фотофизических свойств низкотоксичных фотосенсибилизаторов на основе эндогенных порфиринов // Оптический журнал. 2018. Т. 85. № 11. С. 65–80.


Muravieva T.D., Dadeko A.V., Kiselev V.M., Krisko T.K., Kislyakov I.M., Krisko A.V., Starodubtsev A.M., Bagrov I.V., Belousova I.M., Ponomarev G.V. Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 11. P. 65–80.

For citation (Journal of Optical Technology):

T. D. Murav’eva, A. V. Dadeko, V. M. Kiselev, T. K. Kris’ko, I. M. Kislyakov, A. V. Kris’ko, A. M. Starodubtsev, I. V. Bagrov, I. M. Belousova, and G. V. Ponomarev, "Comparative study of the photophysical properties of low-toxicity photosensitizers based on endogenous porphyrins," Journal of Optical Technology. 85(11), 709-721 (2018).


This paper presents a review of papers associated with the study of in vitro spectral, fluorescence, and photosensitizing properties, as well as the photostability of low-toxicity photosensitizers based on endogenous porphyrins—the disodium salt of 2,4-di(1-methoxyethyl) deuteroporphyrin IX (dimegin) and the tetrapotassium salt of coproporphyrin III—in comparison with chlorin preparations for medical purposes—Photoditazin, Radachlorin, and Fotolon—when photosensitizer solutions are irradiated in the visible range. The influence of transport additives and proteins on the properties mentioned above is discussed and studied. The results of the study are evidence that it is promising to use drugs based on endogenous porphyrins as effective agents for photodynamic therapy and fluorescence diagnosis, where, along with the photophysical properties of the photosensitizer, a key role is played by photostability, low toxicity, and accumulation selectivity in the pathological foci of the organism, and this is directly associated with the chemical structure of the drug. The results of the latest work carried out at S. I. Vavilov State Optical Institute on this specialization are treated separately.


dimegin, coproporphyrin, photoditazin, radachlorin, albumin, pluronic, light absorption, fluorescence, singlet oxygen, photostability, quantum yield


The authors thank ELEST Ltd., St. Petersburg, for providing the TKSCP for the studies and also the Lumex Group, St. Petersburg, for providing the rhodamine B in combination with the Fluorat-02-Panorama spectrometer for the fluorescence radiation of the TKSCP.

OCIS codes: 160.2540, 170.1610, 170.5180, 170.6280


1. M. A. Kaplan, V. N. Kapinus, V. V. Popuchiev, Yu. S. Romanko, E. V. Yaroslavtseva-Isaeva, I. S. Spichenkova, A. M. Shubina, O. V. Borgul’, and E. V. Goranskaya, “Photodynamic therapy: results and prospects,” Radiats. Risk 22(3), 115–123 (2013).
2. E. F. Stranadko, U. M. Koraboev, and M. P. Tolsty, “Photodynamic therapy in purulent diseases of soft tissues,” Khirurgiya (9), 67–70 (2000).
3. I. B. Medvedev, E. I. Belikova, and M. P. Syamichev, Photodynamic Therapy in Ophthalmology (Moskva, Moscow, 2006).
4. R. Khanna, “Fluorescence diagnostics: a forthcoming noninvasive screening adjunct in oral cancer,” J. Res. Med. Den. Sci. 4(2), 79–82 (2016).
5. C. Fritsch and T. Ruzicka, Fluorescence Diagnosis and Photodynamic Therapy of Skin Diseases: Atlas and Handbook (Springer, New York, 2003).
6. M. Kriz, J. Hegyi, T. Ruzicka, and C. Berking, “Fluorescence diagnostics as a guide for demarcation and biopsy of suspected anal cancer,” Int. J. Dermatol. 51(1), 31–34 (2012).
7. H. Stepp and R. Waidelich, “Fluorescence diagnosis and photodynamic therapy in urology,” Aktuel. Urol. 38(6), 455–462 (2007).
8. B. D. Zelickson, “Mechanisms of action of topical aminolevulinic acid,” in Photodynamic Therapy, M. P. Goldman, ed. (Elsevier Saunders, Philadelphia, 2005), pp. 1–12.
9. P. G. Calzavara-Pinton, M. Venturini, and R. Sala, “Photodynamic therapy: update 2006. Part 1: Photochemistry and photobiology,” J. Eur. Acad. Dermatol. Venereol. 21, 293–302 (2007).
10. S. M. Deev and E. N. Lebedenko, “Supramolecular agents for theranostics,” Bioorg. Khim. 41(5), 539–552 (2015).
11. O. V. Baranova, “Photodynamic therapy of psoriasis with medicines of the tetrasulfophthalocyanine series,” Candidate’s dissertation, GOU VPO Russian State Medical University, Federal Agency for Health and Social Development, 2009.
12. Yu. S. Butov, S. N. Akhtyamov, and O. M. Demina, “Photodynamic therapy in the treatment of acne,” in Absracts of Reports of the Sixth International Cosmetic International Conference, Moscow, 2007, pp. 105–106.
13. S. A. Dadvani, V. M. Zuev, S. S. Kharnas, L. A. Belyaeva, and V. B. Loshchenov, “Photodynamic therapy in gynecology,” Lazern. Med. 4(4), 72–79 (2000).
14. E. V. Sanarova, A. V. Lantsova, M. V. Dmitrieva, Z. S. Smirnova, and N. A. Oborotova, “Photodynamic therapy—a method for increasing the selectivity and efficiency of the treatment of tumors,” Ross. Bioterapevticheskii Zh. 13(3), 109–118 (2014).
15. N. V. Kudinova and T. T. Berezov, “Photodynamic therapy of cancer: search for ideal photosensitizer,” Biochem Suppl. Ser. B Biomed. Chem. 4(1), 95–103 (2010) [Biomed. Khim. 55(5), 558–569 (2009)].
16. A. V. Reshetnikov, V. I. Shvets, and G. V. Ponomarev, “Water-soluble tetrapyrrole photosensitizers for photodynamic therapy of cancer (Review),” in Advances in Porphyrin Chemistry, vol. 2, chap. 4 (NII Khimii SPbGU, St. Petersburg, 1999), pp. 70–114.
17. R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, C. J. Childs, and C. H. Sibata, “Photosensitizers in clinical PDT,” Photodiag. Photodyn. Ther. 1(1), 27–42 (2004).
18. I. J. MacDonald and T. J. Dougherty, “Basic principles of photodynamic therapy,” J. Porphyrins Phthalocyanines 5(2), 105–129 (2001).
19. H. Ali and J. E. van Lier, “Metal complexes as photo- and radiosensitizers,” Chem. Rev. 99(9), 2379–2450 (1999).
20. L. M. Moreira, F. V. dos Santos, J. P. Lyon, M. Maftoum-Costa, C. Pacheco-Soares, and N. da Silva, “Photodynamic therapy: porphyrins and phthalocyanines as photosensitizers,” Aust. J. Chem. 61, 741–754 (2008).
21. L. B. Josefsen and R. W. Boyle, “Photodynamic therapy: novel third-generation photosensitizers one step closer?” Br. J. Pharmacol. 154, 1–3 (2008).
22. T. V. Trukhacheva, S. V. Shlyakhtin, G. A. Isakov, and Yu. P. Istomin, Fotolon—a new Method for Photodynamic Therapy (RUP Belmedpreparaty, Minsk, 2009).
23. A. Yu. Kurochkina, V. Yu. Plavskiı˘, and N. A. Yudina, “Classification of photosensitizers of antimicrobial photodynamic therapy of periodontal disease,” Med. Zh. (2), 131–133 (2010).
24. O. G. Polatovskaya, G. V. Barabanshchikova, M. A. Malkov, V. Ya. Bykhovskiı˘, and O. A. Lukina, “The Arthrobacter globiformis strain of bacteria—a producer of coproporphyrin III and a method of obtaining coproporphyrin III,” Russian Patent No. 2078138 (1993).
25. G. V. Ponomarev, V. P. Trukhin, I. V. Krasil’nikov, T. D. Murav’eva, O. I. Koı˘fman, G. V. Kirillova, and A. V. Dadeko, “Method of obtaining the disodium salt 2,4-di(1-methoxyethyl) deuteroporphyrin IX (dimegin),” Russian Patent No. 2647588 (2018).
26. I. M. Belousova, M. V. Dobrun, L. V. Galebskaya, S. I. Gorelov, I. M. Kislyakov, S. E. Kolbasov, A. V. Kris’ko, T. K. Kris’ko, M. A. Malkov, T. D. Murav’eva, and N. N. Petrishchev, “New preparation based on coproporphyrin III for photoluminescence diagnostics and photodynamic therapy,” Proc. SPIE 7822, 782201 (2010).
27. M. A. Malkov, N. N. Petrishchev, and S. N. Mishutkin, “Developing photodynamic therapy for the treatment of neoplastic neoplasms with the use of a photosensitizer based on a coproporphyrin drug,” Fundam. Issled. (1), 142–145 (2008).
28. G. V. Barabanshchikova, A. M. Kurnakov, M. A. Malkov, and A. S. Mel’nikov, “Efficiency of photodynamic therapy of experimental Pliss lymphosarcoma with the use of coproporphyrin III,” Uch. Zap. SPbGMU im. Akad. I. P. Pavlova XI (4), 68–70 (2004).
29. G. V. Barabanshchikova, D. N. Kuz’min, É. V. Kuvaldin, M. A. Malkov, and A. S. Mel’nikova, “The effect of a laser-induced photochemical reaction of coproporphyrin III on the functional properties of microcirculation vessels,” Reg. Krovoobrashch. Mikrotsirk. (3), 64–67 (2004).
30. N. N. Petrishchev, M. A. Malkov, L. V. Galebskaya, I. L. Solovtsova, and A. S. Melnikov, “Photodynamic effects of coproporphyrin III,” in Abstracts of Reports of the 12th International Congress EMLA, WALT, ELA & CSULM-CLSJEP, Prague, 2007, p. 17.
31. G. A. Zhamkochan, G. V. Kirillova, G. V. Ponomarev, Yu. A. Romanychev, G. M. Sukhin, O. V. Chernenko, E. I. Yartsev, and V. G. Yashunskiı˘, “Water-soluble salts of 2,4-di-(α-methoxyethyl)-deu-teroporphyrin IX, which is able to localize itself in cancer tissues,” Russian Patent No. 1160710 (1996).
32. A. A. Krasnovskiı˘, Jr., S. Yu. Egorov, O. V. Nazarova, E. I. Yartsev, and G. V. Ponomarev, “Photogeneration of singlet molecular oxygen water-soluble porphyrins,” Biofizika 32(6), 982–993 (1987).
33. N. N. Glagolev, S. Zh. Rogovina, A. B. Solov’eva, N. A. Aksenova, and S. L. Kotova, “Photocatalytic activity of water-soluble tetrapyrrole compounds in the presence of amino-containing polymers,” Zh. Fiz. Khim. 80(1), 72–76 (2006).
34. O. V. Mislavskiı˘, Yu. V. Alekseev, and G. V. Ponomarev, “Comparative study of the photodynamic effect of photosensitizers that produce hematoporphyrin and chlorin e6 with absorption in the Soret band,” Ross. Bioterapevticheskii Zh. 12(2), 57 (2013).
35. G. V. Ponomarev, S. Yu. Egorov, A. A. Strizhakov, A. S. Kozlov, and A. A. Krasnovskiı˘, Jr., “Photogeneration of singlet oxygen sensitizers of the tetrapyrrole series in connection with problems of photodynamic therapy,” Ross. Bioterapevticheskii Zh. 12(2), 68 (2013).
36. S. I. Gorelov, M. V. Dobrun, T. D. Murav’eva, A. M. Starodubtsev, A. V. Kris’ko, V. M. Kiselev, I. V. Bagrov, A. V. Dadeko, S. E. Kolbasov, and G. V. Ponomarev, “Study of photophysical properties of the ‘Dimegin’ and its preclinical studies,” Fotodin. Terap. Fotodiag. (1), 18 (2014).
37. A. V. Reshetnikov, I. V. Zhigal’tsev, S. N. Kolomeı˘chuk, A. P. Kaplun, V. I. Shvets, O. S. Zhukova, A. V. Karmenyan, A. V. Ivanov, and G. V. Ponomarev, “Production and some properties of the liposome drug 2,4-di(1-methyl-3-hydroxybutyl) deuteroporphyrin IX,” Bioorg. Khim. 25(10), 782–790 (1999).

38. Laser Medicine Center, “Estimating the biological properties of new photosensitizers of the chlorin series,”
39. T. S. Lagoda, M. A. Kaplan, A. M. Bondar, G. V. Ponomarev, B. V. Zubov, A. P. Nikitin, S. V. Egorova, E. A. Ivanov, A. F. Glushkova, A. V. Kirichenko, E. V. Iskra, N. P. Lepekhin, A. I. Brovin, and O. N. Spichenkova, “Study of photodynamic treatment for P-388 lympho-leukemia in mice,” Vopr. Onkol. 57(1), 75–80 (2011).
40. V. M. Bondarenko, Yu. V. Alekseev, O. V. Mislavskiı˘, and G. V. Ponomarev, “Prospects of using the disodium salt of 2,4-di(1-methoxyethyl)-deuteroporphyrin-IX (dimegin) for photodynamic therapy of nononcologic diseases,” Biomed. Khim. 60(3), 338–347 (2014).
41. É. A. Genina, Methods of Biophotonics: Phototherapy (Novyı˘ Veter, Saratov, 2012).
42. D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737–744 (1999).
43. A. Gaigalas and L. Wang, “Measurement of the fluorescence quantum yield using a spectrometer with an integrating sphere detector,” J. Res. Natl. Inst. Stand. Technol. 113, 17–28 (2008).
44. N. M. Émanuél’ and M. G. Kuz’min, Experimental Methods of Chemical Kinetics (Izd. MGU, Moscow, 1985).
45. A. V. Dadeko, T. D. Murav’eva, A. M. Starodubtsev, S. I. Gorelov, M. V. Dobrun, T. K. Kris’ko, I. V. Bagrov, I. M. Belousova, and G. V. Ponomarev, “Photophysical properties of porphyrin photosensitizers,” Opt. Spectrosc. 119(4) 633–637 (2015) [Opt. Spektrosk. 119(4), 617–622 (2015)].
46. V. V. Zarubaev, T. C. Kris’ko, E. V. Kriukova, and T. D. Muraviova, “Effect of albumin on the fluorescence quantum yield of porphyrin-based agents for fluorescent diagnostics,” Photodiag. Photodyn. Ther. 20, 137–143 (2017).
47. I. V. Bagrov, I. M. Belousova, A. V. Dadeko, T. K. Kris’ko, E. V. Kryukova, I. V. Martynenko, and M. R. Savchenko, “Optical and photophysical properties of the chlorin-type photosensitizer Fotolon in aqueous solutions of different acidities,” Opt. Spectrosc. 123(3), 392–398 (2017) [Opt. Spektrosk. 123(3), 364–371 (2017)].
48. E. V. Kriukova, I. M. Belousova, A. V. Dadeko, T. K. Krisko, I. V. Martynenko, and M. R. Savchenko, “Porphyrinic photodiagnosis agents: comparative studies in aqueous, buffer and albumin-containing solutions,” in 2017 Progress in Electromagnetics Research Symposium (PIERS), 2017, pp. 3412–3417.
49. G. V. Ponomarev, L. D. Tavrovsky, A. M. Zaretsky, V. V. Ashmarov, and R. Ph. Baum, “Photosensitizer and the method of its preparation,” Russian Patent No. 2276976 (2004).
50. A. V. Reshetnikov, G. V. Ponomarev, O. Yu. Abakumova, T. A. Tsvetkova, and A. V. Karmenyan, A. G. Rebeko and R. Ph. Baum, “Novel drug form of chlorine E6,” Proc. SPIE 3909, 124–130 (2000).
51. A. V. Dadeko, “The effect of albumin on the photophysical properties of dimegin photosensitizer,” Opt. Spectrosc. 121(6), 823–825 (2016) [Opt. Spektrosk. 121(6), 45–48 (2016)].
52. G. V. Gyulkhandanyan, A. G. Gyulkhandanyan, L. Zh. Gyulkhandanyan, R. K. Ghazaryan, G. V. Amelyan, E. S. Gevorgyan, G. A. Kevorkian, and V. A. Sakanyan, “Binding of some cationic porphyrins with serum albumin,” Biol. J. Arm. 1(62), 15–22 (2010).
53. H. Ibrahim, A. Kasselouri, C. You, P. Maillard, V. Rosilio, R. Pansu, and P. Prognon, “Meso-tetraphenyl porphyrin derivatives: the effect of structural modifications on binding to DMPC liposomes and albumin,” J. Photochem. Photobiol. A 217, 10–21 (2011).
54. P. P. Mishra, S. Patel, and A. Datta, “Effect of increased hydrophobicity on the binding of two model amphiphilic chlorin drugs for photodynamic therapy with blood plasma and its components,” J. Phys. Chem. B 110, 21238–21244 (2006).
55. G. V. Golovina, G. N. Rychkov, V. A. Ol’shevskaya, A. V. Zaitsev, V. N. Kalinin, V. A. Kuzmin, and A. A. Shtil, “Differential binding preference of methylpheophorbide a and its diboronated derivatives to albumin and low-density lipoproteins,” Anticancer Agents Med. Chem. 13(4), 639–646 (2013).
56. N. H. Karapetyan and V. N. Madakyan, “The interaction of new pyridylporphyrins with bovine serum albumin,” Russ. J. Bioorg. Chem. 30(2), 172–177 (2004).
57. I. V. Bagrov, I. M. Belousova, S. I. Gorelov, M. V. Dobrun, V. M. Kiselev, I. M. Kislyakov, A. V. Kris’ko, and T. K. Kris’ko, “A comparative study of the processes of generation of singlet oxygen upon irradiation of aqueous preparations on the basis of chlorin e6 and coproporphyrin III,” Opt. Spectrosc. 122(2), 163–167 (2017) [Opt. Spektrosk. 122(2), 179–184 (2017)].
58. V. A. Privalov, A. V. Lappa, and E. V. Kochneva, “Five years experience of photodynamic therapy with new chlorin photosensitizer,” Proc. SPIE 5863, 186–198 (2005).
59. V. A. Privalov, A. V. Lappa, O. V. Seliverstov, A. B. Faizrakhmanov, N. N. Yarovoy, E. V. Kochneva, M. V. Evnevich, A. S. Anikina, A. V. Reshetnicov, I. D. Zalevsky, and Y. V. Kemov, “Clinical trials of a new chlorin photosensitizer for photodynamic therapy of malignant tumors,” Proc. SPIE 4612, 178–189 (2002).
60. A. V. Reshetnikov, A. V. Ivanov, O. Yu. Abakumova, A. T. Gradyushko, I. D. Zalevskiı˘, A. V. Karmenyan, V. P. Laptev, and N. P. Neugodova, “Estimate of the biological properties of new photosensitizers of the chlorin series,” in The Use of Lasers for the Detection and Treatment of Diseases: A Scientific–Information Collection (submitted to the bulletin Lazer-Inform) (3), 34–40 (2001).
61. M. V. Parkhats, V. A. Galievskiı˘, A. S. Stashevskiı˘, T. V. Trukhacheva, and B. M. Dzhagarov, “Dynamics and efficiency of the photosensitized singlet-oxygen formation by chlorin e6: the effects of the solution pH and polyvinylpyrrolidone,” Opt. Spectrosc. 107(6), 974–980 (2009) [Opt. Spektrosk. 107(6), 1026–1032 (2009)].
62. A. A. Krasnovskiı˘, Jr., “Singlet molecular oxygen and the primary mechanisms of the photodynamic action of optical radiation,” in Science and Engineering Results: Modern Problems of Laser Physics (VINITI, Moscow, 1990), vol. 3, pp. 63–135.
63. N. A. Aksenova, T. Oles, T. Sarna, N. N. Glagolev, A. V. Chernjak, V. I. Volkov, S. L. Kotova, N. S. Melik-Nubarov, and A. B. Solovieva, “Development of novel formulations for photodynamic therapy on the basis of amphiphilic polymers and porphyrin photosensitizers. Porphyrin-polymer complexes in model photosensitized processes,” Laser Phys. 22(10), 1642–1649 (2012).
64. A. V. Dadeko, T. D. Murav’eva, A. M. Starodubtsev, and I. M. Belousova, “Study of the photophysical properties of a water-soluble photosensitizer of porphyrin nature—dimegin,” J. Opt. Technol. 83, 193–196 (2016) [Opt. Zh. 83(3), 71–75 (2016)].
65. T. M. Zhientaev, N. S. Melik-Nubarov, E. A. Litmanovich, N. A. Aksenova, N. N. Glagolev, and A. B. Solov’eva, “The effect of pluronics on the photocatalytic activity of water-soluble porphyrins,” Vysokomol. Soedin. Ser. A 51(5), 757–767 (2009).
66. Yu. A. Gorokh, N. A. Aksenova, A. B. Solov’eva, V. A. Ol’shevskaya, A. V. Zaı˘tsev, M. A. Lagutina, V. N. Luzgina, A. F. Mironov, and V. N. Kalinin, “The effect of amphiphilic polymers on the photocatalytic activity of water-soluble porphyrinov photosensitizers,” Zh. Fiz. Khim. 85(5), 959–963 (2011).
67. A. B. Solov’eva, N. S. Melik-Nubarov, N. A. Aksenova, N. N. Glagolev, G. V. Vstovskiı˘, V. S. Bugrin, V. N. Luzgina, V. A. Ol’shevskaya, and G. V. Belkova, “Pluronics-solubilized porphyrin photosensitizers of the oxidation of tryptophan,” Zh. Fiz. Khim. 80(1), 137–143 (2006).
68. A. G. Gyulkhandanyan, M. V. Parkhats, V. N. Knyukshto, S. V. Lepeshkevich, B. M. Dzhagarov, A. A. Zakoyan, A. G. Gyulkhandanyan, M. A. Sheyranyan, G. A. Kevorkian, and G. V. Gyulkhandanyan, “Binding of cationic porphyrins and metalloporphyrins to the human transferrin for photodynamic therapy of tumors,” Proc. SPIE 10685, 1068504 (2018).
69. U. Kragh-Hansen, “Molecular aspects of ligand binding to serum albumin,” Pharmacol. Rev. 33(1), 17–53 (1981).
70. M. Wardell, Z. Wang, J. X. Ho, J. Robert, F. Ruker, J. Ruble, and D. C. Carter, “The atomic structure of human methemalbumin at 1.9 Å,” Biochem. Biophys. Res. Commun. 291(4), 813–819 (2002).
71. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov’ev, “The spectroscopy of the porphyrins,” Sov. Phys. Usp. 6, 67–105 (1963) [Usp. Fiz. Nauk 79(2), 173–234 (1963)].
72. C. F. Polo, A. L. Frisardi, E. R. Resnik, A. E. M. Schoua, and A. M. C. Batlle, “Factors influencing fluorescence spectra of free porphyrins,” Clin. Chem. 34(4), 757–780 (1988).
73. N. N. Bulgakova, D. M. Yagudaev, A. E. Sorokatyı˘, A. V. Geı˘nits, and M. V. Markova, “Study of the accumulation of Fotoditazinephotosensitizer in hyperplastic tissue of the human prostate gland,” Fiz. Med. 15, 15–21 (2005).
74. Y. Zhang and H. Gorner, “Photoprocesses of chlorin e6 bound to lysozyme or bovine serum albumin,” Dyes Pigm. 83, 174–179 (2009).
75. H. A. Isakau, M. V. Parkhats, V. N. Knyukshto, B. M. Dzhagarov, E. P. Petrov, and P. T. Petrov, “Toward understanding the high PDT efficacy of chlorin e6–polyvinylpyrrolidone formulations: photophysical and molecular aspects of photosensitizer–polymer interaction in vitro,” J. Photochem. Photobiol. B 92(3), 165–174 (2008).
76. K. Hirakawa, H. Umemoto, R. Kikuchi, H. Yamaguchi, Y. Nishimura, T. Arai, S. Okazaki, and H. Segawa, “Determination of singlet oxygen and electron transfer mediated mechanisms of photosensitized protein damage by phosphorus (V) porphyrins,” Chem. Res. Toxicol. 28, 262–267 (2015).