ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-02-28-33

Study of the optical and absorption properties of micro-nanostructure on metal surfaces

For Russian citation (Opticheskii Zhurnal):

Haijian Liang, Fengbao Yang, Gao Wang, Yafei Guo, Yuchen Kang, Yanhong Wang, Hongxin Xue, Yanlong Wei Study of the optical and absorption properties of micro-nanostructure on metal surfaces (Исследование оптических поглощательных свойств поверхности металла, подвернутой микро-наноструктурированию) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 2. С. 28–33. http://doi.org/10.17586/1023-5086-2018-85-02-28-33

 

Haijian Liang, Fengbao Yang, Gao Wang, Yafei Guo, Yuchen Kang, Yanhong Wang, Hongxin Xue, Yanlong Wei Study of the optical and absorption properties of micro-nanostructure on metal surfaces (Исследование оптических поглощательных свойств поверхности металла, подвернутой микро-наноструктурированию) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 2. P. 28–33. http://doi.org/10.17586/1023-5086-2018-85-02-28-33

For citation (Journal of Optical Technology):

Haijian Liang, Fengbao Yang, Gao Wang, Yafei Guo, Yuchen Kang, Yanhong Wang, Hongxin Xue, and Yanlong Wei, "Study of the optical and absorption properties of micro-nanostructure on metal surfaces," Journal of Optical Technology. 85(2), 83-87 (2018). https://doi.org/10.1364/JOT.85.000083

Abstract:

A femtosecond laser system with a frequency of 1 kHz, average power of 185 mW, and wavelength of 800 nm was used in this study to micromachine a polished tungsten block surface. The micro-nanostructure of the tungsten surface was induced via laser and the machined surface roughness was measured with a profiling instrument. The blackened surface sample with periodic fluctuation appeared to be rougher than the polished surface sample. The absorption spectra of the two samples was measured with a spectrophotometer. Average micro-nanostructure tungsten sample absorption was 89% in the range of 380 nm to 1,100 nm. The two samples were simulated via finite difference time domain (FDTD) method; both polished and darkened tungsten models were established based on the experimental measurements. Model absorption with fluctuation structures were over 90% with wavelengths from 380 nm to 1,100 nm, i.e., the simulation results were consistent with experimental results. Two kinds of samples were heated by laser in the wavelength of 976 nm at a 400 W
process as temperature changes were measured with tungsten-rhenium thermocouples. The temperature of the blackened tungsten increased at a greater rate than the polished sample at a maximum difference of 88 °С. The results suggest that tungsten absorption can be effectively improved by utilizing a periodic and random structure combination on the tungsten surface.

Keywords:

femtosecond laser, tungsten, absorption, micro-nanostructure

Acknowledgements:

We acknowledge the anonymous reviewers for their insightful suggestions that helped improve this paper. We also thank the National Natural Science Foundation of China (61573323) for their support.

OCIS codes: 240.6680, 140.3390, 220.4241, 350.4238

References:

1. Tanvir K.M.A., Edwin J.Y.L., Phillip S. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper // Opt. Lasers Eng. 2015. V. 66(66). P. 258–268.
2. Edwin J.Y.L., Julien S., Nicolas B. Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium // Appl. Surf. Sci. 2015. V. 353. P. 512–521.
3. Liu L., Huang H., Hu A., Zou G., Quintino L., Zhou Y. Nano brazing of Pt-Ag nanoparticles under femtosecond laser irradiation // Nano-Micro Lett. 2013. V. 5(2). P. 88–92.
4. Li G., Li J., Yang L., Li X., Hu Y., Chua J., Huang W. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps // Appl. Surf. Sci. 2013. V. 276(7). P. 203–209.
5. Wang Z.P., Feng G.Y., Wang S.T., Li G., Dai S.Y., Zhou S.H. Improving the quality of femtosecond laser processing microhole array by coated with aluminum film on fused silica // Optik. 2017. V. 128. P. 178–184.
6. Melentiev P.N., Kuzin A.A., Gritchenko A.S., Kalmykov A.S., Balykin V.I. Spatial and temporal coherence properties of single free-electron laser pulses // Opt. Commun. 2017. V. 382(16). P. 509–513.
7. Zhang Y., Liu L., Zou G., Chen N., Wu A., Bai H., Zhou Y. Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy // J. Appl. Phys. 2015. V. 117(2). P. 023109.
8. Shi H.X., Cui Z., Wang W.X. Blackening of magnesium alloy using femtosecond laser // Appl. Opt. 2015. V. 54(25). P. 7766–7772.
9. Rudolph K.W., Daminelli G.P., Krüger J. Physico-chemical aspects of femtosecond pulse laser induced surface nanostructures // Appl. Phys. A. 2005. V. 81(1). P. 65–70.
10. Zhou M., Yuan D.Q., Li J. Micro- and nanostructures on metal induced by femtosecond laser radiation // Spectrosc Spect. Anal. 2009. V. 29(6). P. 1454–1458.
11. Ahmmed K.M.T., Grambow C., Kietzig A. Fabrication of micro-nanostructures on metals by femtosecond laser micromachining // Micromachines. 2014. V. 5(4). P. 1219.
12. Jörn B., Sandra H., Sabrina V.K., Arkadi R., Jörg K. Laser-induced periodic surface structures – a scientific evergreen // IEEE Journal of Selected Topics in Quantum Electronics. 2017. V. 23(3). P. 1–15.
13. Martínez-Calderon M., Rodríguez A., Dias-Ponte A., Morant-Minana M.C., Gómez-Aranzadi M., Olaizola S.M., Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS // Appl. Surf. Sci. 2015. V. 374. P. 81–89.
14. Erdoǧan, Öktem B.M., Kalaycıoğlu H. Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz repetition rate femtosecond and picosecond Yb-doped fiber lasers // Opt. Express. 2011. V. 19(11). P. 10986–10996.
15. Fan P., Zhong M., Li L., Huang T., Zhang H. Rapid fabrication of surface micro-nanostructures with enhanced broadband absorption on Cu by picosecond laser // Opt. Express. 2013. V. 21(10). P. 11628–11637.
16. Vorobyev A.Y., Guo C.L. Metallic light absorbers produced by femtosecond laser pulses // Advances in Mechanical Engineering. 2010. V. 2. P. 1652–1655.
17. Zheng B.X., Wang W.J., Jiang G.D. Research status and application prospects of manufacturing technology for micronanosurface structures with low reflectivity // J. Engineering Manufacture. 2014. V. 229(11). P. 1877–1892.
18. Vorobyev A.Y., Topkov A.N., Gurin O.V. Enhanced absorption of metals over ultra-broad electromagnetic spectrum // Appl. Phys. Lett. 2009. V. 95(12). P. 121106.
19. Vorobyev A.Y., Guo C.L. Colorizing metals with femtosecond laser pulses // Appl. Phys. Lett. 2008. V. 92(4). P .041914.
20. Stratakis E., Zorba V., Barberoglou M., Fotakis C., Shafeev G.A. Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids // Appl. Surf. Sci. 2009. V. 255(10). P. 5346–5350.
21. Deng G.L., Feng G.Y., Liu K. Temperature dependence of laser-induced micro-nanostructures for femtosecond laser irradiation of silicon // Appl. Opt. 2014. V. 53(14). P. 3004–3009.
22. Song P., Xing P., Chen J. Progress of tungsten foil fabrication // Rare Metal Mat. Eng. 2009. V. 38(1). P. 382–386.
23. Zhang P., Zhu Q., Qin H., Shen W. Research progress of high temperature materials for aero-engines // Mater Rev. 2014. V. 28(6). P. 27–31+37.
24. Vorobyev A.Y., Makin V.S., Guo C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources // Phys. Rev. Lett. 2009. V. 102(23). P. 234301.
25. Irimiciuc S.A., Gurlui S., Bulai G., Nica P., Agop M., Focsa C. Langmuir probe investigation of transient plasmas generated by femtosecond laser ablation of several metals: influence of the target physical properties on the plume dynamics // Appl. Surf. Sci. 2017. V. 417. P. 108–118.
26. Seymour R.J., Krupczak J.J., Stegeman G.I. High efficiency coupling to the over coated surface plasmon mode in the far infrared // Appl. Phys. Lett. 1984. V. 44(4). P. 373–375.
27. Steijn K.W., Seymour R.J., Stegeman G.I. Attenuation of far‐infrared surface plasmons on over coated metal // Appl. Phys. Lett. 1986. V. 49(18). P. 1151–1153.
28. Maier S.A., Andrews S.R., Martin-Moreno L., Garcia-Vidal F.J. Terahertz surface plasmon polariton propagation and focusing on periodically corrugated metal wires // Phys. Rev. Lett. 2006. V. 97(17). P. 176805.
29. Ritchie R.H. Plasma losses by fast electrons in thin films // Phys. Rev. 1957. V. 106(5). P. 874–881.
30. Marquier F., Joulain K., Mullet J.P., Carminati R., Greffet J.J. Engineering infrared emission properties of silicon in the near field and the far field // Opt. Commun. 2004. V. 237(4). P. 379–388.