ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-03-19-26

УДК: 535.37, 544.72

Fabricating thin films with colloidal quantum dots on planar substrates using polymethyl methacrylate

For Russian citation (Opticheskii Zhurnal):

Тананаев П.Н., Богинская И.А., Быков И.В., Трофимов И.В., Родионов И.А., Рыжиков И.А., Янковский Г.М., Барышев А.В. Изготовление тонких слоев коллоидных квантовых точек на планарных субстратах с использованием полиметилметакрилата // Оптический журнал. 2018. Т. 85. № 3. С. 19–26. http://doi.org/10.17586/1023-5086-2018-85-03-19-26

 

Tananaev P.N., Boginskaya I.A., Bykov I.V., Trofimov I.V., Rodionov I.A., Ryzhikov I.A., Yankovskiy G.M., Baryshev A.V. Fabricating thin films with colloidal quantum dots on planar substrates using polymethyl methacrylate [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 3. P. 19–26. http://doi.org/10.17586/1023-5086-2018-85-03-19-26

For citation (Journal of Optical Technology):

P. N. Tananaev, I. A. Boginskaya, I. V. Bykov, I. V. Trofimov, I. A. Rodionov, I. A. Ryzhikov, G. M. Yankovskiĭ, and A. V. Baryshev, "Fabricating thin films with colloidal quantum dots on planar substrates using polymethyl methacrylate," Journal of Optical Technology. 85(3), 136-143 (2018). https://doi.org/10.1364/JOT.85.000136

Abstract:

This paper demonstrates the possibilities of a method of depositing uniform layers of colloidal CdSe/CdS/ZnS quantum dots with a hydrophobic shell made from fatty acids and aliphatic amines onto planar substrates. Using centrifugation onto flat substrates, separate thin layers of polymethyl methacrylate and quantum dots are deposited with good adhesion, with the quantum dots being dispersed in the polymethyl methacrylate. The topology of the fabricated layers is investigated by means of atomic-force microscopy and luminescence mapping, and the processes of aggregation and segregation of the quantum dots into a separate phase is studied. The deposited layers can be structured by means of electron-beam lithography in order to create quantum-dot-based nanostructures.

Keywords:

colloidal quantum dots, polymethyl methacrylate, thin films, nanoplasmonics, nanophotonics, centrifugation

Acknowledgements:

The research was supported by the Fund for Promising Research (7/004/2013–2018); Bauman Moscow State Technical University (Bauman MSTU) (ID 74300).
We thank A. V. Zverev for selecting the conditions for taking pictures by SEM. The studies were carried out using the material-engineering facilities of TsKP Functional Micro/Nanosystems Scientific Education Center of the N. É. Bauman MSTU.

OCIS codes: 160.2540, 160.4236, 240.2130, 300.6280, 350.4238

References:

1. A. V. Krasavin, A. V. Zayats, and N. I. Zheludev, “Active control of surface plasmon-polariton waves,” J. Opt. A 7, 85–89 (2005).
2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
3. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
4. M. I. Stockman, “Spasers explained,” Nat. Photonics 2, 327–329 (2008).
5. V. I. Klimov, Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties (CRC Press, 2003).
6. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H.-S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, “Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking,” Nat. Mater. 12, 445–451 (2013).
7. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, “Single-exciton optical gain in semiconductor nanocrystals,” Nature 447, 441–446 (2007).
8. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nat. Nanotechnol. 7, 335–339 (2012).
9. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
10. I. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon-polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010).
11. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010).
12. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6, 16–24 (2012).
13. V. R. Manfrinato, D. D. Wanger, D. B. Strasfeld, H. S. Han, F. Marsili, J. P. Arrieta, T. S. Mentzel, M. G. Bawendi, and K. K. Berggren, “Controlled placement of colloidal quantum dots in sub-15-nm clusters,” Nanotechnology 24, 125302 (2013).
14. T. S. Mentzel, D. D. Wanger, N. Ray, B. J. Walker, D. Strasfeld, M. G. Bawendi, and M. A. Kastner, “Nanopatterned electrically conductive films of semiconductor nanocrystals,” Nano Lett. 12, 4404–4408 (2012).
15. F. T. Rabouw, M. Frimmer, A. Mohtashami, and A. F. Koenderink, “Nanoscale lithographic positioning of fluorescing quantum dot nanocrystals on planar samples,” Opt. Mater. 35, 1342–1347 (2013).
16. S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, and D. J. Norris, “Near-field light design with colloidal quantum dots for photonics and plasmonics,” Nano Lett. 14, 5827–5833 (2014).
17. C. B. Walsh and E. I. Franses, “Ultrathin PMMA films spin-coated from toluene solutions,” Thin Solid Films 429(1–2), 71–76 (2003).
18. M. J. Rooks, S. Wind, P. McEuren, and D. E. Prober, “Fabrication of 30-nm-scale structures for electron transport studies using a polymethylmethacrylate bilayer resist,” J. Vac. Sci. Technol. B 5(1), 318–321 (1987).
19. M. Decker, I. Staude, I. I. Shishkin, K. B. Samusev, P. Parkinson, V. K. A. Sreenivasan, A. Minovich, A. E. Miroshnichenko, A. Zvyagin, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, “Dual-channel spontaneous emission of quantum dots in magnetic metamaterials,” Nat. Commun. 4, 2949 (2013).
20. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
21. S. Jin, E. DeMarco, M. J. Pellin, O. K. Farha, G. P. Wiederrecht, and J. T. Hupp, “Distance-engineered plasmon-enhanced light harvesting in CdSe quantum dots,” J. Phys. Chem. Lett. 4, 3527–3533 (2013).
22. M. Tamborra, M. Striccoli, M. L. Curri, J. A. Alducin, D. Mecerreyes, J. A. Pomposo, N. Kehagias, V. Reboud, S. Torres, M. Clivia, and A. Agostiano, “Nanocrystal-based luminescent composites for nanoimprinting lithography,” Small 3(5), 822–828 (2007).
23. P. P. Pompa, L. Martiradonna, A. Della Torre, F. Della Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1, 126–130 (2006).
24. J. Grandidier, J. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux, “Gain-assisted propagation in a plasmonic waveguide at telecom wavelength,” Nano Lett. 9, 2935–2939 (2009).
25. Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Gingera, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93, 053106 (2008).
26. J.-M. Kim, D.-H. Lee, J.-H. Jeun, T.-S. Yoon, H. H. Lee, J.-W. Lee, and Y.-S. Kim, “Non-volatile organic memory based on CdSe nanoparticle/PMMA blend as a tunneling layer,” Synth. Met. 161, 1155–1158 (2011).
27. L. Sun, J. J. Choi, D. Stachnik, A. C. Bartnik, B.-R. Hyun, G. G. Malliaras, T. Hanrath, and F. W. Wise, “Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control,” Nat. Nanotechnol. 7, 369–373 (2012).
28. S. Coe-Sullivan, J. S. Steckel, W.-K. Woo, M. G. Bawendi, and V. Bulovic, “Large-area ordered quantum-dot monolayers via phase separation during spin-casting,” Adv. Funct. Mater. 15, 1117–1124 (2005).
29. I. Suarez, H. Gordillo, R. Abargues, S. Albert, and J. Martinez-Pastor, “Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films,” Nanotechnology 22, 435202 (2011).

30. N. Reitinger, A. Hohenau, S. Kostler, J. R. Krenn, and A. Leitner, “Radiationless energy transfer in CdSe/ZnS quantum dot aggregates embedded in PMMA,” Phys. Status Solidi A 208(3), 710–714 (2001).
31. C.-J. Chen, C.-C. Lin, J.-Y. Lien, S.-L. Wang, and R.-K. Chiang, “Preparation of quantum dot/polymer light conversion films with alleviated Forster resonance energy transfer redshift,” J. Mater. Chem. C 3, 196–203 (2015).
32. D. Necas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” Cent. Eur. J. Phys. 10(1), 181–188 (2012).
33. I. Yu. Evchuk, R. I. Musii, R. G. Makitra, and R. E. Pristanskii, “Solubility of polymethyl methacrylate in organic solvents,” Russian J. Appl. Chem. 78(10), 1576–1580 (2005).
34. E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon-polariton-enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10, 813–820 (2010).