ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-04-49-52

УДК: 535.36

Monitoring hydrogen sulfide molecules in the atmospheric boundary layer by differential absorption and scattering lidar from space

For Russian citation (Opticheskii Zhurnal):

Привалов В.Е., Шеманин В.Г. Мониторинг молекул сероводорода в атмосферном пограничном слое лидаром дифференциального поглощения и рассеяния из космоса // Оптический журнал. 2018. Т. 85. № 4. С. 49–52. http://doi.org/10.17586/1023-5086-2018-85-04-49-52

 

Privalov V.E., Shemanin V.G. Monitoring hydrogen sulfide molecules in the atmospheric boundary layer by differential absorption and scattering lidar from space [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 4. P. 49–52. http://doi.org/10.17586/1023-5086-2018-85-04-49-52

For citation (Journal of Optical Technology):

V. E. Privalov and V. G. Shemanin, "Monitoring hydrogen sulfide molecules in the atmospheric boundary layer by differential absorption and scattering lidar from space," Journal of Optical Technology. 85(4), 229-232 (2018). https://doi.org/10.1364/JOT.85.000229

Abstract:

The results of the numerical solution of the lidar equation for differential absorption and scattering are presented for probing hydrogen sulfide molecules in the atmosphere with a concentration level of 1011  cm−3 from a space platform at altitudes from hundreds of kilometers to geostationary orbit. It is shown that the measurement time for the level of such a concentration of the investigated hydrogen sulfide molecules at a laser wavelength of 3.83 μm and an altitude of 100 to 36,000 km lies in the range of 0.8 μs–10.5 s for a differential absorption and scattering lidar. Therefore, it is possible to measure the concentrations of the investigated hydrogen sulfide molecules at a level of 1011  cm−3 with such a lidar from a space platform.

Keywords:

lidar, equation, differential absorption and scattering, molecule, sulfide, concentration, space platform

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (5.7721.2017/BCh).

OCIS codes: 280.3640

References:

1. V. E. Privalov, A. É. Fotiadi, and V. G. Shemanin, Lasers and Environmental Monitoring of the Atmosphere (Lan’, Saint Petersburg, 2013).
2. V. E. Privalov and V. G. Shemanin, “Lidar equation taking into account the finite width of the lasing line,” Bull. Russ. Acad. Sci. Phys. 79(2), 149–159 (2015).
3. R. Mezheris, Remote Laser Probing (Mir, Moscow, 1987).
4. D. L. Laı˘khtman, Physics of the Boundary Layer of the Atmosphere (Gidromet. Izd., Leningrad, 1970).
5. V. E. Privalov and V. G. Shemanin, “Parameters of the differential absorption lidar for detecting molecular iodine in the atmosphere,” J. Opt. Technol. 66(2), 112–114 (1999) [Opt. Zh. 66(2), 40–42 (1999)].
6. V. V. Zuev, M. Yu. Kataev, M. M. Makogon, and A. A. Mitsel’, “Lidar method of differential absorption: Current state of research,” Opt. Atmos. Okeana 8(8), 1136–1164 (1995).
7. Laser Handbook, Volume I, A. M. Prokhorov, ed. (Sovetskoe Radio, Moscow, 1978).