ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-08-87-94

Cerebral iconics: how are visual stimuli represented centrally in the human brain?

For Russian citation (Opticheskii Zhurnal):

Danilova M.V., J. D. Mollon Cerebral iconics: how are visual stimuli represented centrally in the human brain? (Кортикальная иконика: механизмы сенсорных сравнений в мозге человека) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 8. С. 87–94. http://doi.org/10.17586/1023-5086-2018-85-08-87-94

 

Danilova M.V., J. D. Mollon Cerebral iconics: how are visual stimuli represented centrally in the human brain? (Кортикальная иконика: механизмы сенсорных сравнений в мозге человека) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 8. P. 87–94. http://doi.org/10.17586/1023-5086-2018-85-08-87-94

For citation (Journal of Optical Technology):

M. V. Danilova and J. D. Mollon, "Cerebral iconics: how are visual stimuli represented centrally in the human brain?," Journal of Optical Technology. 85(8), 515-520 (2018). https://doi.org/10.1364/JOT.85.000515

Abstract:

In the case of some sensory attributes (e.g. luminance), differential thresholds increase with the spatial separation between the stimuli to be compared, but in other cases (e.g. spatial frequency, hue) thresholds vary little whether the stimuli are close together or separated by 10 degrees of arc. To this latter class of sensory attributes, we here add two dimensions: Speed of motion and Chromatic purity. Stimuli were presented too briefly for an eye movement and could fall at any positions on an imaginary circle centred on the fixation point. What neural mechanisms underlie discrimination in such tasks? We doubt discrimination depends on a large array of dedicated ‘comparator neurons’, one for each possible pair of positions in the visual field and for each sensory attribute. Instead we suggest that information about local sensory properties is carried to the cortical site of comparison by neural connections that resemble the man-made Internet in so far as the same physical substrate from moment to moment carries different information in a symbolic code.

Keywords:

sensory comparison, differential threshold, motion perception, speed discrimination, colour vision, chromatic purity, saturation

Acknowledgements:

This study was supported by the Program of Fundamental Scientific Research of State Academies for 2013–2020 (GP-14, section 63).

OCIS codes: 330.4270, 330.5000, 330.5510

References:

1. Danilova M.V., Mollon J.D. What do we compare when comparing separated objects? // Journal of Optical Technology. 1999. V. 66. P. 857–861.
2. Traub A.C., Balinkin I. Proximity factor in the Judd color difference formula // Journal of the Optical Society of America. 1961. V. 51. P. 755–760.
3. Graham C.H. Vision and visual perception. NY.: Wiley, 1965. 637 p.
4. Victor J.D., Conte M.M. Temporal phase discrimination depends critically on separation // Vision Research. 2002. V. 42. P. 2063–2071.
5. Walsh J.W.T. Photometry. London: Constable, 1958. 544 p.
6. Danilova M.V., Mollon J.D. Comparison at a distance // Perception. 2003. V. 32. P. 395–414.
7. Danilova M.V., Mollon J.D. The comparison of spatially separated colours // Vision Research. 2006. V. 46. P. 823–836.
8. Balas B.J., Sinha A.K.P. Receptive field structures for recognition // Neural Computation. 2006. V. 18. P. 497–520.
9. Sterling P., Laughlin S.B. Principles of neural design. Cambridge, Mass.: MIT, 2015. 542 p.
10. Stevens S.S. On the psychophysical law // Psychological review. 1957. V. 64. P. 153–181.
11. Panek D.W., Stevens S.S. Saturation of red – prothetic continuum // Perception & Psychophysics. 1966. V. 1. P. 59–66.
12. Reichardt W. Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Bewegungswahrnehmung eines Insektes) // Zeitschrift für Naturforschung. 1957. V. 12b. P. 448–457.
13. Born R.T., Tootell R.B.H. Segregation of global and local motion processing in primate middle temporal visual area // Nature. 1992. V. 357. P. 497–499.
14. Ölveczky B.P., Baccus S.A., Meister M. Segregation of object and background motion in the retina // Nature. 2003. V. 423. P. 401–408.
15. Aitken J. On a new variety of ocular spectrum // Journal of the Royal Society of Edinburgh. 1879. V. 13. P. 322–325.
16. Wohlgemuth A. On the after-effect of seen movement. Cambridge: Cambridge University Press, 1911. 117 p.
17. Day R.H., Strelow E. Reduction or disappearance of visual after-effect of movement in the absence of a patterned surround // Nature. V. 230. P. 55–56.
18. Shelepin Y.E., Gerchikova V.F. O predstavitel’stve oboih polupolej zrenija v laterl’noj suprasil’vievioj oblasti odnogo polusharija (On the representation of the two visual hemifields in lateral suprasylvian area of one hemisphere) // Fiziologicheskij Zhurnal USSR (Sechenov Physiological Journal of the USSR). 1982. V. 68. P. 763–767.
19. Pigarev I.N., Northdurft H.-C., Kastner S. Neurons with large bilateral receptive fields in monkey prelunate gyrus // Experimental Brain Research. 2001. V. 136. P. 108–113.

20. Lappe M., Bremmer F., Pekel M., Thiele A., Hoffmann K.-P. Optic flow processing in monkey STS: A theoretical and experimental approach // Journal of Neuroscience. 1996. V. 16. P. 6265–6285.
21. Maruya K., Holcombe A.O., Nishida S. Rapid encoding of relationships between spatially remote motion signals // Journal of Vision. 2013. V. 13. P. 4.
22. Debruyn B., Orban G.A. Human velocity and direction discrimination measured with random dot patterns // Vision Research. 1988. V. 28. P. 1323–1335.
23. Danilova M.V., Mollon J.D. The gap effect is exaggerated in the parafovea // Visual Neuroscience. 2006. V. 23. P. 509–517.
24. Lages M., Treisman M. Spatial frequency discrimination: visual long-term memory or criterion setting? // Vision Research. 1998. V. 38. P. 557–572.
25. MacAdam D.L. Influence of visual adaptation on loci of constant hue and saturation // Journal of the Optical Society of America. 1951. V. 41. P. 615–619.
26. Danilova M.V., Mollon J.D. Novyj psychophysicheskij metod dlia izmerenija porogov razlichenija/sravnenija dvuh odnovremenno pred’javliaemyh stimulov. [A new psychophysical method for measuring discrimination/comparison thresholds of simultaneously presented stimuli.] // Psychophysica segodnia [Psychophysics Today] / Ed. by Nosulenko V.N., Skotnikova I.G. Moscow: Russian Academy of Sciences, 2006. P. 26–35.
27. MacLeod D.I.A., Boynton R.M. Chromaticity diagram showing cone excitation by stimuli of equal luminance // Journal of the Optical Society of America. 1979. V. 69. P. 1183–1186.
28. Smith V.C., Pokorny J., Sun H. Chromatic contrast discrimination: data and prediction for stimuli varying in L and M cone excitation // Color Research and Application. 2000. V. 25. P. 105–115.
29. Konorski J. Some new ideas concerning the physiological mechanisms of perception // Acta neurobiologiae experimentalis. 1967. V. 27. P. 147–161.
30. Dehaene S., Naccache L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework // Cognition. 2001. V. 79. P. 1–37.
31. Newman J., Baars B.J., Cho S.B. A neural Global Workspace model for conscious attention // Neural Networks. 1997. V. 10. P. 1195–1206.
32. Danilova M.V., Mollon J.D. The symmetry of visual fields in chromatic discrimination // Brain and Cognition. 2009. V. 69. P. 39–46.
33. Hussar C.R., Pasternak T. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons // Journal of Neuroscience. 2012. V. 32. P. 2747–2761.
34. Treisman A. How the deployment of attention determines what we see // Visual Cognition. 2006. V. 14. P. 411–443.