ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-09-84-90

Study on high precision corneal curvature radius measurement system

For Russian citation (Opticheskii Zhurnal):

Guolin Huang, Zuojiang Xiao, Xuyang Zhou Study on high precision corneal curvature radius measurement system (Исследование системы высокоточного измерения радиуса кривизны роговицы)  [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 9. С. 84–90. http://doi.org/10.17586/1023-5086-2018-85-09-84-90

 

Guolin Huang, Zuojiang Xiao, Xuyang Zhou Study on high precision corneal curvature radius measurement system (Исследование системы высокоточного измерения радиуса кривизны роговицы) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 9. P. 84–90. http://doi.org/10.17586/1023-5086-2018-85-09-84-90

For citation (Journal of Optical Technology):

Guolin Huang, Zuojiang Xiao, and Xuyang Zhou, "Study of a high precision corneal curvature radius measurement system," Journal of Optical Technology. 85(9), 590-595 (2018). https://doi.org/10.1364/JOT.85.000590

Abstract:

In order to improve the measurement efficiency and measurement accuracy of corneal curvature, a high precision corneal curvature radius measurement system was designed. Based on the principle of film reflection imaging, the measurement light source (concentric circle with light-emitting diode lights) is projected onto the cornea of the human eye, and the human eye cornea with the measurement light source marker is imaged on the photodetector by an optical imaging objective lens and processed by the image processing. Calculate the height of the measurement light source on the photodetector to the center of the cornea. Finally, use the method of least squares to find the corneal curvature radius. The system uses a double telecentric lens for the optical imaging objective lens to ensure that the optical system has a constant magnification in a certain depth of field. At the same time, low coherence interferometry technology is used to accurately measure the distance between the corneal apex and the measuring light source. The standard corneal simulated eye was tested with the designed prototype. The measurement accuracy was ±0.02 mm. The experimental results show that the high accuracy corneal curvature radius measurement system can effectively improve the accuracy of corneal curvature measurement.

Keywords:

high precision, low coherence interference, automatic tracking alignment,radius of curvature

OCIS codes: 260.0260, 120.0120, 080.0080

References:

1. Howland H.C., Howland B. Photorefraction: A technique for study of refractive state at a distance // JOSA. 1974. V. 64. № 2. P. 240–249.
2. Choi M., Weiss S., Schaeffel F. Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (power refractor) // Optometry & Vision Science Official Publication of the American Academy of Optometry. 2000. V. 77. № 10. P. 2363–2373.
3. Yan J., Meng P.H., Zhao J.Q. Research of curvature measuring system of eyes cornea // Journal of Basic Science & Engineering. 2011. V. 19. P. 254-261.
4. Xia B., Wang M., Guo Q.S., Wang F. Bilateral telecentric system for image measurement of small parts // Optical Instruments. 2015. V. 37. № 4. P. 314–318.
5. Li M.D., Gao X.Y., Chen P.B., Ye P., Huang Y. The design of high resolution double telecentric lens based on machine vision // Optical Instruments. 2016. V. 38. № 3. P. 226–232.
6. Shi Z.H., Yang B.X., Hu X.B., Jin C.Q., Wei Z.F., Li J., Huang H.J. Self-mixing interference in dual-wavelength fiber ring laser using cascaded fiber Bragg gratings // J. Opt. 2016. V. 36. № 6. P. 123–130.
7. Liu F.G., Zha X.Y., Yang B., Gao W.Y., Zheng H., Zhong P. Research on measurement method of lens center thickness based on low coherence interferometry of fibers // Application Laser. 2016. V. 36. № 5. P. 605–610.
8. Zheng S.L., Liu Y.Q., Wang Z.J., Kong X.M. Design of optical system for a novel imaging keratometer // J. Opt. 2013. V. 33. № 5. P. 202–208.
9. Schaeffel F., Farkas L., Howland H.C. Infrared photoretinoscope // Appl. Opt. 1987. V. 26. № 8. P. 1505–1509.
10. Yan B., Wang B., Li Y. An improved ellipse fitting algorithm based on least square method // J. Beijing University of Aeronautics & Astronautics. 2008. V. 34. № 3. P. 295–298.