ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-05-45-50

УДК: 620, 621.38

Nonlinear control of piezoelectric actuator system for phase shift interferometer

For Russian citation (Opticheskii Zhurnal):

Fang Wang, Shuo Zhu, Qingjie Lu, Shouhong Tang, and Sen Han Nonlinear control of piezoelectric actuator system for phase shift interferometer (Нелинейное управление системой пьезоэлектрических актуаторов для фазового интерферометра сдвига) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 5. С. 45–50. http://doi.org/10.17586/1023-5086-2019-86-05-45-50

 

Fang Wang, Shuo Zhu, Qingjie Lu, Shouhong Tang, and Sen Han Nonlinear control of piezoelectric actuator system for phase shift interferometer (Нелинейное управление системой пьезоэлектрических актуаторов для фазового интерферометра сдвига) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 5. P. 45–50. http://doi.org/10.17586/1023-5086-2019-86-05-45-50

For citation (Journal of Optical Technology):

Fang Wang, Shuo Zhu, Qingjie Lu, Shouhong Tang, and Sen Han, "Nonlinear control of a piezoelectric actuator system for a phase shift interferometer," Journal of Optical Technology. 86(5), 296-300 (2019). https://doi.org/10.1364/JOT.86.000296

Abstract:

The phase of an interferogram carries the desired information for various applications such as 3D profilometry that can measure the surface 3D topography of optical elements. The phase can be obtained with a phase shift interferometer by acquiring a series of interferograms while changing optical path difference. The optical path difference is generated through piezoelectric actuator pushing reference mirror. However, the phase achieved by the interferometer has severe error due to the nonlinear characteristic of the piezoelectric actuator. To eliminate the phase error, we propose an open-loop control system to correct the nonlinear characteristic of the piezoelectric actuator. The control system integrates a Micro-programmed Control Unit, a 16-bit Digital-to-Analog Converter, two amplifiers, an inbuilt high-resolution strain gauge sensor, a signal processing unit and a 24-bit Analog-to-Digital Converter with our software to achieve the purpose. The experimental result of the system can accurately linearize the piezoelectric actuator. Both its control principles as well as its experimental validation are depicted in this paper.

Keywords:

interferogram, phase shift, piezoelectric actuator, nonlinear phase error

Acknowledgements:

The research was supported by the National key research and development plan (2016YFF0101903).

OCIS codes: 120.3180, 120.5050, 120.4800

References:

1. Tang S. Non linear phase shift calibration for interferomentric measurement of multiple surfaces// United States Patent 6856405 B2. Feb. 15, 2005.
2. Goodwin E.P., Wyant J.C. Interferometric optical testing. Bellingham, WA, USA:SPIE, 2006.
3. Malacara D. Optical shop testing. Hoboken, NJ, USA: Wiley, 2007.
4. Lu Q., Zhu S., Wang F., Tang S., Han S. A real-time feedback system to stabilize laser intensity on wavelength modulation interferometer // IEEE Photon. Technol. Lett. 2018. V. 30. № 18. P. 1613–1616.
5. Bruning J.H., Herriott D.R., Gallagher J.E., Rosenfeld D.P., Ehite A.D., Bran Brangaccio D.J. Digital wavefront measuring interferometer for testing optical surfaces and lenses // Appl. Opt. 1974. V. 13. P. 2693–2703.
6. Tang S. Generalized algorithm for phase shiftting interferometry // Proc. SPIE. USA: Denver, Jul., 1996.

7. Kinnstaetter K., Lohmann A.W., Schwider J., Streibl N. Accuracy of phase shifting interferometry // Appl. Opt. 1988. V. 27. P. 5082–5089.
8. Lai G., Yatagai T. Generalized phase-shiftting interferometry // JOSoA. 1991. V. A8. P. 822–827.
9. de Groot P. Measurement of transparent plates with wavelength-tuned phase-shifting interferometry // App. Opt. 2000. V. 39. № 16. P. 2658–2663.
10. Joshi S.P. Non-linear constitutive relations for piezoceramic materials // Smart Mater. Struct. 1992. V. 1. № 80. P. 80–83.
11. Liaw H.C., Shirinzadeh B., Smith J. Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuator system for micro/nano manipulation // IEEE Trans. Control Syst. Technol. 2008. V. 16. № 4. P. 826–833.
12. Li Z., Zhang X., Su C., Chai T. Nonlinear control of systems preceded by preisach hysteresis description: A prescribed adaptive control approach // IEEE Trans. Control Syst. Technol. 2016. V. 24. № 2. P. 451–460.
13. Janaideh M.A., Rakotondrabe M., Aljanaideh O. Further results on hysteresis compensation of smart micropositioning systems with the inverse Prandtl-Ishlinskii compensator // IEEE Trans. Control Syst. Technol. 2016. V. 24. № 2. P. 428–439.
14. Xu Q. Digital sliding mode prediction control of piezoelectric micro/nanopositioning system // IEEE Trans. Control Syst. Technol. 2015. V. 23. № 1. P. 297–304.
15. Habineza D., Rakotondrabe M., Gorrec Y.L. Bouc-Wen modeling and feedforward control of multivariable hysteresis in piezoelectric systems: Application to a 3-D of piezotube scanner // IEEE Trans. Control Syst. Technol. 2015. V. 23. № 5. P. 1797–1806.
16. Zheng J., Fu M. Saturation control of a piezoelectric actuator for fast settling-time performance // IEEE Trans. Control Syst. Technol. 2013. V. 21. № 1. P. 220–228.